Suppr超能文献

一种用于研究炭疽致死因子 N 端结构域功能关系的半合成平台。

A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor.

机构信息

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

ACS Chem Biol. 2010 Apr 16;5(4):359-64. doi: 10.1021/cb100003r.

Abstract

Many bacterial toxins act by covalently altering molecular targets within the cytosol of mammalian cells and therefore must transport their catalytic moieties across a membrane. The Protective-Antigen (PA) moiety of anthrax toxin forms multimeric pores that transport the two enzymatic moieties, the Lethal Factor (LF) and the Edema Factor, across the endosomal membrane to the cytosol. The homologous PA-binding domains of these enzymes contain N-terminal segments of highly charged amino acids that are believed to enter the pore and initiate N- to C-terminal translocation. Here we describe a semisynthesis platform that allows chemical control of this segment in LF(N), the PA-binding domain of LF. Semisynthetic LF(N) was prepared in milligram quantities by native chemical ligation of synthetic LF(N)(14-28)alphathioester with recombinant N29C-LF(N)(29-263) and compared with two variants containing alterations in residues 14-28 of the N-terminal region. The properties of the variants in blocking ion conductance through the PA pore and translocating across planar phospholipid bilayers in response to a pH gradient were consistent with current concepts of the mechanism of polypeptide translocation through the pore. The semisynthesis platform thus makes new analytical approaches available to investigate the interaction of the pore with its substrates.

摘要

许多细菌毒素通过共价修饰哺乳动物细胞质内的分子靶标而发挥作用,因此必须将其催化结构域运输穿过细胞膜。炭疽毒素的保护性抗原 (PA) 结构域形成多聚体孔,将两种酶结构域(致死因子 [LF] 和水肿因子)穿过内体膜运输到细胞质。这些酶的同源 PA 结合结构域包含带正电荷的氨基酸的 N 端片段,据信这些片段进入孔并引发 N 到 C 端易位。在这里,我们描述了一个半合成平台,该平台允许在 LF(N)(LF 的 PA 结合结构域)中对该片段进行化学控制。通过合成 LF(N)(14-28)alpha硫酯与重组 N29C-LF(N)(29-263)的天然化学连接,以毫克量制备半合成 LF(N),并将其与包含 N 端区域 14-28 残基改变的两种变体进行比较。这些变体在阻断通过 PA 孔的离子电导以及响应 pH 梯度跨平面磷脂双层转运的特性与目前关于多肽通过孔易位的机制的概念一致。因此,该半合成平台为研究孔与底物的相互作用提供了新的分析方法。

相似文献

2
Membrane translocation by anthrax toxin.
Mol Aspects Med. 2009 Dec;30(6):413-22. doi: 10.1016/j.mam.2009.06.003. Epub 2009 Jun 27.
3
Interactions of anthrax lethal factor with protective antigen defined by site-directed spin labeling.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1868-73. doi: 10.1073/pnas.1018965108. Epub 2011 Jan 24.
4
Purified Bacillus anthracis lethal toxin complex formed in vitro and during infection exhibits functional and biological activity.
J Biol Chem. 2005 Mar 18;280(11):10834-9. doi: 10.1074/jbc.M412210200. Epub 2005 Jan 11.
5
Proton-coupled protein transport through the anthrax toxin channel.
Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):209-15. doi: 10.1098/rstb.2008.0126.
6
Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design.
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15075-80. doi: 10.1073/pnas.0507488102. Epub 2005 Oct 7.
7
Binding of N-terminal fragments of anthrax edema factor (EF(N)) and lethal factor (LF(N)) to the protective antigen pore.
Biochim Biophys Acta. 2008 Jun;1778(6):1436-43. doi: 10.1016/j.bbamem.2008.01.007. Epub 2008 Jan 16.
8
A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore.
Science. 2005 Jul 29;309(5735):777-81. doi: 10.1126/science.1113380.
9
GRP78(BiP) facilitates the cytosolic delivery of anthrax lethal factor (LF) in vivo and functions as an unfoldase in vitro.
Mol Microbiol. 2011 Sep;81(5):1390-401. doi: 10.1111/j.1365-2958.2011.07770.x. Epub 2011 Jul 29.
10
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation.
J Mol Model. 2016 Jan;22(1):7. doi: 10.1007/s00894-015-2878-8. Epub 2015 Dec 11.

引用本文的文献

1
Chemoenzymatic Semisynthesis of Proteins.
Chem Rev. 2020 Mar 25;120(6):3051-3126. doi: 10.1021/acs.chemrev.9b00450. Epub 2019 Nov 27.
2
Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel.
Biophys J. 2019 Nov 5;117(9):1751-1763. doi: 10.1016/j.bpj.2019.08.041. Epub 2019 Sep 12.
3
Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry.
ACS Nano. 2016 Sep 27;10(9):8843-50. doi: 10.1021/acsnano.6b04663. Epub 2016 Aug 30.
4
Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9611-6. doi: 10.1073/pnas.1600624113. Epub 2016 Aug 9.
5
A d-Amino Acid at the N-Terminus of a Protein Abrogates Its Degradation by the N-End Rule Pathway.
ACS Cent Sci. 2015 Nov 25;1(8):423-430. doi: 10.1021/acscentsci.5b00308. Epub 2015 Nov 11.
6
Role of the α Clamp in the Protein Translocation Mechanism of Anthrax Toxin.
J Mol Biol. 2015 Oct 9;427(20):3340-3349. doi: 10.1016/j.jmb.2015.08.024. Epub 2015 Sep 5.
7
Prodrug applications for targeted cancer therapy.
AAPS J. 2014 Sep;16(5):899-913. doi: 10.1208/s12248-014-9638-z. Epub 2014 Jul 9.
8
Anthrax toxin-induced rupture of artificial lipid bilayer membranes.
J Chem Phys. 2013 Aug 14;139(6):065101. doi: 10.1063/1.4816467.
9
Electrostatic ratchet in the protective antigen channel promotes anthrax toxin translocation.
J Biol Chem. 2012 Dec 21;287(52):43753-64. doi: 10.1074/jbc.M112.419598. Epub 2012 Oct 31.

本文引用的文献

1
The protective antigen component of anthrax toxin forms functional octameric complexes.
J Mol Biol. 2009 Sep 25;392(3):614-29. doi: 10.1016/j.jmb.2009.07.037. Epub 2009 Jul 20.
2
Studying protein structure and function using semisynthesis.
Biopolymers. 2008;90(6):743-50. doi: 10.1002/bip.21102.
4
GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore.
Nat Struct Mol Biol. 2008 Jul;15(7):754-60. doi: 10.1038/nsmb.1442. Epub 2008 Jun 22.
5
Anthrax toxin: receptor binding, internalization, pore formation, and translocation.
Annu Rev Biochem. 2007;76:243-65. doi: 10.1146/annurev.biochem.75.103004.142728.
6
Insights into the mechanism and catalysis of the native chemical ligation reaction.
J Am Chem Soc. 2006 May 24;128(20):6640-6. doi: 10.1021/ja058344i.
7
Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.
J Mol Biol. 2006 Feb 3;355(5):968-79. doi: 10.1016/j.jmb.2005.11.030. Epub 2005 Dec 1.
8
A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore.
Science. 2005 Jul 29;309(5735):777-81. doi: 10.1126/science.1113380.
9
Evidence that translocation of anthrax toxin's lethal factor is initiated by entry of its N terminus into the protective antigen channel.
Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16756-61. doi: 10.1073/pnas.0405754101. Epub 2004 Nov 17.
10
Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin.
J Mol Biol. 2004 Nov 26;344(3):739-56. doi: 10.1016/j.jmb.2004.09.067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验