Suppr超能文献

保护性抗原通道中的静电棘轮促进炭疽毒素易位。

Electrostatic ratchet in the protective antigen channel promotes anthrax toxin translocation.

机构信息

California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA.

出版信息

J Biol Chem. 2012 Dec 21;287(52):43753-64. doi: 10.1074/jbc.M112.419598. Epub 2012 Oct 31.

Abstract

Central to the power-stroke and brownian-ratchet mechanisms of protein translocation is the process through which nonequilibrium fluctuations are rectified or ratcheted by the molecular motor to transport substrate proteins along a specific axis. We investigated the ratchet mechanism using anthrax toxin as a model. Anthrax toxin is a tripartite toxin comprised of the protective antigen (PA) component, a homooligomeric transmembrane translocase, which translocates two other enzyme components, lethal factor (LF) and edema factor (EF), into the cytosol of the host cell under the proton motive force (PMF). The PA-binding domains of LF and EF (LF(N) and EF(N)) possess identical folds and similar solution stabilities; however, EF(N) translocates ∼10-200-fold slower than LF(N), depending on the electrical potential (Δψ) and chemical potential (ΔpH) compositions of the PMF. From an analysis of LF(N)/EF(N) chimera proteins, we identified two 10-residue cassettes comprised of charged sequence that were responsible for the impaired translocation kinetics of EF(N). These cassettes have nonspecific electrostatic requirements: one surprisingly prefers acidic residues when driven by either a Δψ or a ΔpH; the second requires basic residues only when driven by a Δψ. Through modeling and experiment, we identified a charged surface in the PA channel responsible for charge selectivity. The charged surface latches the substrate and promotes PMF-driven transport. We propose an electrostatic ratchet in the channel, comprised of opposing rings of charged residues, enforces directionality by interacting with charged cassettes in the substrate, thereby generating forces sufficient to drive unfolding.

摘要

蛋白质易位的动力冲程和布朗棘轮机制的核心是通过分子马达将非平衡涨落进行整流或棘轮化,从而将底物蛋白沿着特定的轴运输的过程。我们使用炭疽毒素作为模型来研究棘轮机制。炭疽毒素是一种由保护性抗原(PA)成分、同源寡聚跨膜转运体组成的三聚体毒素,在质子动力势(PMF)下,转运体将另外两种酶成分致死因子(LF)和水肿因子(EF)转运到宿主细胞的细胞质中。LF 和 EF 的 PA 结合域(LF(N)和 EF(N))具有相同的折叠和相似的溶液稳定性;然而,EF(N)的转运速度比 LF(N)慢约 10-200 倍,具体取决于 PMF 的电化学势(Δψ)和化学势(ΔpH)组成。通过对 LF(N)/EF(N)嵌合体蛋白的分析,我们确定了两个由带电荷序列组成的 10 残基盒,这些序列负责 EF(N)转运动力学受损。这些盒具有非特异性静电要求:一个出乎意料的是,当由 Δψ 或 ΔpH 驱动时,更喜欢酸性残基;第二个仅在由 Δψ 驱动时需要碱性残基。通过建模和实验,我们确定了 PA 通道中负责电荷选择性的带电表面。带电表面锁住底物并促进 PMF 驱动的运输。我们提出了一个通道中的静电棘轮,由相反的带电残基环组成,通过与底物中的带电盒相互作用来强制方向,从而产生足够的力来驱动展开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a826/3527960/bc85f7253ced/zbc0021334290001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验