School of Medicine, Department of Infectious Diseases, University of Alabama at Birmingham, 845 19th Street South, Birmingham Alabama 35294, USA.
Int J Health Geogr. 2010 Feb 24;9:12. doi: 10.1186/1476-072X-9-12.
A site near Tuskegee, Alabama was examined for vector-host activities of eastern equine encephalomyelitis virus (EEEV). Land cover maps of the study site were created in ArcInfo 9.2 from QuickBird data encompassing visible and near-infrared (NIR) band information (0.45 to 0.72 microm) acquired July 15, 2008. Georeferenced mosquito and bird sampling sites, and their associated land cover attributes from the study site, were overlaid onto the satellite data. SAS 9.1.4 was used to explore univariate statistics and to generate regression models using the field and remote-sampled mosquito and bird data. Regression models indicated that Culex erracticus and Northern Cardinals were the most abundant mosquito and bird species, respectively. Spatial linear prediction models were then generated in Geostatistical Analyst Extension of ArcGIS 9.2. Additionally, a model of the study site was generated, based on a Digital Elevation Model (DEM), using ArcScene extension of ArcGIS 9.2.
For total mosquito count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 5.041 km, nugget of 6.325 km, lag size of 7.076 km, and range of 31.43 km, using 12 lags. For total adult Cx. erracticus count, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 5.764 km, nugget of 6.114 km, lag size of 7.472 km, and range of 32.62 km, using 12 lags. For the total bird count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 4.998 km, nugget of 5.413 km, lag size of 7.549 km and range of 35.27 km, using 12 lags. For the Northern Cardinal count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 6.387 km, nugget of 5.935 km, lag size of 8.549 km and a range of 41.38 km, using 12 lags. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled mosquito data and elevation (R2 = -.4262; p < .0001), with a standard deviation (SD) of 10.46, and total sampled bird data and elevation (R2 = -.5111; p < .0001), with a SD of 22.97. DEM statistics also indicated a significant inverse linear relationship between total sampled Cx. erracticus data and elevation (R2 = -.4711; p < .0001), with a SD of 11.16, and the total sampled Northern Cardinal data and elevation (R2 = -.5831; p < .0001), SD of 11.42.
These data demonstrate that GIS/remote sensing models and spatial statistics can capture space-varying functional relationships between field-sampled mosquito and bird parameters for determining risk for EEEV transmission.
阿拉巴马州塔斯基吉附近的一个地点,对东部马脑炎病毒(EEEV)的媒介-宿主活动进行了研究。使用 ArcInfo 9.2 软件,从 2008 年 7 月 15 日获取的快鸟数据中创建了研究地点的土地覆盖地图,该数据包含可见光和近红外(NIR)波段信息(0.45 至 0.72 微米)。将与蚊和鸟采样相关的地理参考点以及它们的土地覆盖属性叠加到卫星数据上。使用 SAS 9.1.4 探索单变量统计,并使用现场和远程采样的蚊和鸟数据生成回归模型。回归模型表明,库蚊和北冠蓝鸦是最丰富的蚊和鸟类物种,分别为。然后,在 Geostatistical Analyst 扩展模块中生成了空间线性预测模型ArcGIS 9.2。此外,还基于数字高程模型(DEM),使用 ArcGIS 9.2 的 ArcScene 扩展模块生成了研究地点的模型。
对于总蚊计数数据,在偏斜度为 5.041km、块金值为 6.325km、滞后大小为 7.076km 和范围为 31.43km 的情况下,使用 12 个滞后,拟合一阶趋势普通克里金过程到半变异图。对于总成年库蚊计数,在偏斜度为 5.764km、块金值为 6.114km、滞后大小为 7.472km 和范围为 32.62km 的情况下,使用 12 个滞后,拟合一阶趋势普通克里金过程到半变异图。对于总鸟计数数据,在偏斜度为 4.998km、块金值为 5.413km、滞后大小为 7.549km 和范围为 35.27km 的情况下,使用 12 个滞后,拟合一阶趋势普通克里金过程到半变异图。对于北冠蓝鸦计数数据,在偏斜度为 6.387km、块金值为 5.935km、滞后大小为 8.549km 和范围为 41.38km 的情况下,使用 12 个滞后,拟合一阶趋势普通克里金过程到半变异图。DEM 分析结果表明,总采样蚊数据与海拔之间存在统计学上显著的负线性关系(R2 = -.4262;p <.0001),标准偏差(SD)为 10.46,总采样鸟数据与海拔之间存在统计学上显著的负线性关系(R2 = -.5111;p <.0001),SD 为 22.97。DEM 统计数据还表明,总采样库蚊数据与海拔之间存在统计学上显著的负线性关系(R2 = -.4711;p <.0001),SD 为 11.16,总采样北冠蓝鸦数据与海拔之间存在统计学上显著的负线性关系(R2 = -.5831;p <.0001),SD 为 11.42。
这些数据表明,GIS/遥感模型和空间统计可以捕捉到现场采样蚊和鸟类参数之间的空间变化功能关系,以确定 EEEV 传播的风险。