Suppr超能文献

可逆性肾损伤动物模型中的组织病理学与细胞凋亡

Histopathology and apoptosis in an animal model of reversible renal injury.

作者信息

Shuvy Mony, Nyska Abraham, Beeri Ronen, Abedat Suzan, Gal-Moscovici Anca, Rajamannan Nalini M, Lotan Chaim

机构信息

Cardiovascular Research Center, Heart Institute, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem 91120, Israel.

出版信息

Exp Toxicol Pathol. 2011 May;63(4):303-6. doi: 10.1016/j.etp.2010.02.002. Epub 2010 Feb 23.

Abstract

High adenine phosphate (HAP) diet serves as an animal model of chronic renal failure (RF). Induction of RF and establishment of end organ damage require long exposure periods to this diet. Previously, we have shown that RF is reversible after diet cessation even after protracted administration. In this study, we explored the underlying renal changes and cellular pathways occurring during administration and after cessation of the diet. Kidneys were obtained from rats fed HAP diet for 7 weeks, and from rats fed HAP diet followed a 10 week recovery period on normal diet. The kidneys of HAP diet group were significantly enlarged due to tubular injury characterized by massive cystic dilatation and crystal deposition. Kidney injury was associated with markers of apoptosis as well as with activation of apoptosis related pathways. Diet cessation was associated with a significant reduction in kidney size, tubules diameter, and crystals deposition. The recovery from renal injury was coupled with regression of apoptotic features. This is the first study showing the potential reversibility of long standing RF model, allowing optimal evaluation of uremia-chronic effects.

摘要

高腺嘌呤磷酸盐(HAP)饮食可作为慢性肾衰竭(RF)的动物模型。诱导肾衰竭并造成终末器官损伤需要长期食用这种饮食。此前,我们已经表明,即使经过长期给药,在停止饮食后肾衰竭也是可逆的。在本研究中,我们探究了在饮食给药期间及停止饮食后发生的潜在肾脏变化和细胞途径。从喂食HAP饮食7周的大鼠以及喂食HAP饮食后再在正常饮食上恢复10周的大鼠身上获取肾脏。HAP饮食组的肾脏因肾小管损伤而显著增大,其特征为大量囊性扩张和晶体沉积。肾损伤与凋亡标志物以及凋亡相关途径的激活有关。停止饮食与肾脏大小、肾小管直径和晶体沉积的显著减少有关。肾损伤的恢复与凋亡特征的消退相关。这是第一项表明长期存在的肾衰竭模型具有潜在可逆性的研究,从而能够对尿毒症的慢性影响进行最佳评估。

相似文献

1
Histopathology and apoptosis in an animal model of reversible renal injury.
Exp Toxicol Pathol. 2011 May;63(4):303-6. doi: 10.1016/j.etp.2010.02.002. Epub 2010 Feb 23.
2
Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice.
Nephrol Dial Transplant. 2013 May;28(5):1140-9. doi: 10.1093/ndt/gfs569. Epub 2013 Jan 22.
4
Limitation of apoptotic changes in renal tubular cell injury induced by hyperoxaluria.
Urol Res. 2004 Aug;32(4):271-7. doi: 10.1007/s00240-003-0393-3. Epub 2004 Jul 13.

引用本文的文献

1
Adenine at lower doses acts in the kidney as an aquaretic agent and prevents hyponatremia.
Purinergic Signal. 2025 Aug 12. doi: 10.1007/s11302-025-10105-7.
2
Adenine-induced animal model of chronic kidney disease: current applications and future perspectives.
Ren Fail. 2024 Dec;46(1):2336128. doi: 10.1080/0886022X.2024.2336128. Epub 2024 Apr 4.
3
Animal Models for Studying Protein-Bound Uremic Toxin Removal-A Systematic Review.
Int J Mol Sci. 2023 Aug 25;24(17):13197. doi: 10.3390/ijms241713197.
4
Negative terpinen-4-ol modulate potentially malignant and malignant lingual lesions induced by 4-nitroquinoline-1-oxide in rat model.
Naunyn Schmiedebergs Arch Pharmacol. 2022 Nov;395(11):1387-1403. doi: 10.1007/s00210-022-02275-7. Epub 2022 Aug 9.
5
Protective potential of curcumin in L-NAME-induced hypertensive rat model: AT1R, mitochondrial DNA synergy.
Int J Physiol Pathophysiol Pharmacol. 2020 Oct 15;12(5):134-146. eCollection 2020.
6
Sodium copper chlorophyllin attenuates adenine-induced chronic kidney disease via suppression of TGF-beta and inflammatory cytokines.
Naunyn Schmiedebergs Arch Pharmacol. 2020 Nov;393(11):2029-2041. doi: 10.1007/s00210-020-01912-3. Epub 2020 Jun 5.
8
Adenine acts in the kidney as a signaling factor and causes salt- and water-losing nephropathy: early mechanism of adenine-induced renal injury.
Am J Physiol Renal Physiol. 2019 Apr 1;316(4):F743-F757. doi: 10.1152/ajprenal.00142.2018. Epub 2019 Jan 9.
9
Intermittent hypoxia exacerbates increased blood pressure in rats with chronic kidney disease.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F927-F941. doi: 10.1152/ajprenal.00420.2017. Epub 2018 Jun 13.
10
Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice.
Front Physiol. 2017 Nov 23;8:896. doi: 10.3389/fphys.2017.00896. eCollection 2017.

本文引用的文献

1
Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats.
Cardiovasc Res. 2008 Aug 1;79(3):492-9. doi: 10.1093/cvr/cvn088. Epub 2008 Apr 5.
2
Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
N Engl J Med. 2004 Sep 23;351(13):1296-305. doi: 10.1056/NEJMoa041031.
4
The pathogenesis of septic acute renal failure.
Curr Opin Crit Care. 2003 Dec;9(6):496-502. doi: 10.1097/00075198-200312000-00006.
5
6
Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis.
Am J Physiol Renal Physiol. 2003 Apr;284(4):F608-27. doi: 10.1152/ajprenal.00284.2002.
7
Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies.
Toxicol Pathol. 2002 Jan-Feb;30(1):93-6. doi: 10.1080/01926230252824761.
8
Endotoxin-induced renal failure. II. A role for tubular hypoxic damage.
Exp Nephrol. 2000 Jul-Oct;8(4-5):275-82. doi: 10.1159/000020679.
9
Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation.
Kidney Int. 1999 Jan;55(1):168-78. doi: 10.1046/j.1523-1755.1999.00249.x.
10
Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis.
Science. 1997 Oct 10;278(5336):294-8. doi: 10.1126/science.278.5336.294.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验