Suppr超能文献

斑马鱼和鲨鱼缺乏外胚层 germinal layer,揭示了小脑发育的独特的、无羊膜类动物的原基模式。

Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development.

机构信息

Medical Research Council Centre for Developmental Neurobiology, King's College London, London, United Kingdom.

出版信息

J Neurosci. 2010 Feb 24;30(8):3048-57. doi: 10.1523/JNEUROSCI.6201-09.2010.

Abstract

The granule cell layer of the cerebellum comprises the largest population of neurons in the vertebrate CNS. In amniotes, its precursors undergo a unique phase of transit amplification, regulated by Sonic hedgehog. They do so within a prominent but transient secondary proliferative epithelium, the external germinal layer, which is formed by tangential migration of precursor cells from the rhombic lip. This behavior is a hallmark of bird and mammal cerebellum development. Despite its significance for both development and disease, it is unclear whether an external germinal layer is a requirement for granule cell production or an expedient of transit amplification. Evidence for its existence in more basal vertebrates is contradictory. We therefore examined cerebellum development in the zebrafish, specifically in relation to the expression of the basic helix-loop-helix gene Atonal 1, which definitively characterizes granule cell precursors. The expression of Atoh1a-Atoh1c, in combination with patterns of proliferation and fate maps, define precursor pools at the rhombic lip and cerebellar midline but demonstrate that an external germinal layer is absent. Sonic hedgehog signaling is correspondingly absent in the zebrafish cerebellum. Sustained roof-plate-derived signals suggest that, in the absence of transit amplification, primary granule cell precursor pools are maintained throughout development. To determine whether this pattern is specific to zebrafish or reflects a more general anamniote organization, we examined the expression of similar genes in the dogfish, Scylliorhinus canicula. We show that these anamniotes share a common ground plan of granule cell production that does not include an external germinal layer.

摘要

小脑的颗粒细胞层包含脊椎动物中枢神经系统中最大的神经元群体。在羊膜动物中,其前体细胞经历了一个独特的过渡扩增阶段,由 Sonic hedgehog 调控。它们在一个突出但短暂的次级增殖上皮内进行,即外胚层,由来自菱形唇的前体细胞的切线迁移形成。这种行为是鸟类和哺乳动物小脑发育的标志。尽管它对发育和疾病都很重要,但尚不清楚外胚层是否是颗粒细胞产生的要求还是过渡扩增的权宜之计。关于其在更基础的脊椎动物中的存在的证据是相互矛盾的。因此,我们研究了斑马鱼的小脑发育,特别是与基本螺旋-环-螺旋基因 Atonal 1 的表达有关,该基因明确表征了颗粒细胞前体。Atoh1a-Atoh1c 的表达,结合增殖模式和命运图谱,定义了菱形唇和小脑中线的前体细胞池,但表明不存在外胚层。Sonic hedgehog 信号在斑马鱼小脑中相应缺失。持续的顶板衍生信号表明,在没有过渡扩增的情况下,初级颗粒细胞前体池在整个发育过程中都得到维持。为了确定这种模式是否特定于斑马鱼,或者反映了更普遍的无羊膜动物组织,我们检查了狗鲨,Scylliorhinus canicula 中类似基因的表达。我们表明,这些无羊膜动物共享不包括外胚层的颗粒细胞产生的共同基本计划。

相似文献

2
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.
Dev Biol. 2018 Jun 1;438(1):44-56. doi: 10.1016/j.ydbio.2018.03.004. Epub 2018 Mar 13.
3
Proneural gene-linked neurogenesis in zebrafish cerebellum.
Dev Biol. 2010 Jul 1;343(1-2):1-17. doi: 10.1016/j.ydbio.2010.03.024. Epub 2010 Apr 11.
9
Can clues from evolution unlock the molecular development of the cerebellum?
Mol Neurobiol. 2011 Feb;43(1):67-76. doi: 10.1007/s12035-010-8160-2. Epub 2010 Dec 21.
10
Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors.
Neuron. 2005 Oct 6;48(1):17-24. doi: 10.1016/j.neuron.2005.08.028.

引用本文的文献

2
Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system.
Biol Open. 2024 Nov 15;13(11). doi: 10.1242/bio.060421. Epub 2024 Nov 12.
3
A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma.
Cell Rep. 2024 Aug 27;43(8):114559. doi: 10.1016/j.celrep.2024.114559. Epub 2024 Jul 29.
7
Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum.
Cerebellum. 2024 Apr;23(2):620-677. doi: 10.1007/s12311-022-01506-0. Epub 2023 Feb 13.
8
Dermal appendage-dependent patterning of zebrafish Merkel cells.
Elife. 2023 Jan 17;12:e85800. doi: 10.7554/eLife.85800.

本文引用的文献

1
Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche.
J Neurosci. 2009 May 13;29(19):6142-53. doi: 10.1523/JNEUROSCI.0072-09.2009.
2
Anatomy of zebrafish cerebellum and screen for mutations affecting its development.
Dev Biol. 2009 Jun 15;330(2):406-26. doi: 10.1016/j.ydbio.2009.04.013. Epub 2009 Apr 14.
4
Evolution of cortical neurogenesis.
Brain Res Bull. 2008 Mar 18;75(2-4):398-404. doi: 10.1016/j.brainresbull.2007.10.047. Epub 2007 Nov 20.
5
Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells.
J Neurosci. 2008 Mar 5;28(10):2301-12. doi: 10.1523/JNEUROSCI.5157-07.2008.
6
Development of the cerebellar body in sharks: spatiotemporal relations of Pax6 expression, cell proliferation and differentiation.
Neurosci Lett. 2008 Feb 20;432(2):105-10. doi: 10.1016/j.neulet.2007.11.059. Epub 2007 Dec 7.
7
Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis.
Dev Biol. 2008 Feb 15;314(2):376-92. doi: 10.1016/j.ydbio.2007.12.006. Epub 2007 Dec 15.
9
Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning.
Nature. 2007 Jan 18;445(7125):311-4. doi: 10.1038/nature05436. Epub 2006 Dec 24.
10
Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion.
Nat Rev Neurosci. 2006 Nov;7(11):883-90. doi: 10.1038/nrn2008. Epub 2006 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验