Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
Glycobiology. 2010 Jul;20(7):812-23. doi: 10.1093/glycob/cwq020. Epub 2010 Feb 24.
Immunologically, "self" carbohydrates protect the HIV-1 surface glycoprotein, gp120, from antibody recognition. However, one broadly neutralizing antibody, 2G12, neutralizes primary viral isolates by direct recognition of Manalpha1-->2Man motifs formed by the host-derived oligomannose glycans of the viral envelope. Immunogens, capable of eliciting antibodies of similar specificity to 2G12, are therefore candidates for HIV/AIDS vaccine development. In this context, it is known that the yeast mannan polysaccharides exhibit significant antigenic mimicry with the glycans of HIV-1. Here, we report that modulation of yeast polysaccharide biosynthesis directly controls the molecular specificity of cross-reactive antibodies to self oligomannose glycans. Saccharomyces cerevisiae mannans are typically terminated by alpha1-->3-linked mannoses that cap a Manalpha1-->2Man motif that otherwise closely resembles the part of the oligomannose epitope recognized by 2G12. Immunization with S. cerevisiae deficient for the alpha1-->3 mannosyltransferase gene (DeltaMnn1), but not with wild-type S. cerevisiae, reproducibly elicited antibodies to the self oligomannose glycans. Carbohydrate microarray analysis of DeltaMnn1 immune sera revealed fine carbohydrate specificity to Manalpha1-->2Man units, closely matching that of 2G12. These specificities were further corroborated by enzyme-linked immunosorbent assay with chemically defined glycoforms of gp120. These antibodies exhibited remarkable similarity in the carbohydrate specificity to 2G12 and displayed statistically significant, albeit extremely weak, neutralization of HIV-1 compared to control immune sera. These data confirm the Manalpha1-->2Man motif as the primary carbohydrate neutralization determinant of HIV-1 and show that the genetic modulation of microbial polysaccharides is a route towards immunogens capable of eliciting antibody responses to the glycans of HIV-1.
从免疫学角度来看,“自身”碳水化合物可保护 HIV-1 表面糖蛋白 gp120 免受抗体识别。然而,有一种广泛中和抗体 2G12,可通过直接识别宿主衍生寡甘露糖聚糖的 HIV 包膜中的 Manalpha1-->2Man 基序来中和原发性病毒分离株。因此,能够诱导与 2G12 具有相似特异性的抗体的免疫原是 HIV/AIDS 疫苗开发的候选物。在这种情况下,已知酵母甘露聚糖多糖与 HIV-1 的聚糖表现出显著的抗原模拟性。在这里,我们报告说,酵母多糖生物合成的调节直接控制了与自身寡甘露糖聚糖发生交叉反应的抗体的分子特异性。酿酒酵母甘露聚糖通常被 alpha1-->3 连接的甘露糖终止,该甘露糖终止了 otherwise closely resembles the part of the oligomannose epitope recognized by 2G12 的 Manalpha1-->2Man 基序。用缺乏 alpha1-->3 甘露糖基转移酶基因(DeltaMnn1)的酿酒酵母(DeltaMnn1)免疫,而不是用野生型酿酒酵母免疫,可重复性地诱导针对自身寡甘露糖聚糖的抗体。DeltaMnn1 免疫血清的碳水化合物微阵列分析显示出对 Manalpha1-->2Man 单位的精细碳水化合物特异性,与 2G12 非常匹配。酶联免疫吸附试验(ELISA)用化学定义的 gp120 糖型进一步证实了这些特异性。这些抗体在碳水化合物特异性方面与 2G12 具有惊人的相似性,并且与对照免疫血清相比,对 HIV-1 表现出统计学上显著的(尽管非常弱)中和作用。这些数据证实了 Manalpha1-->2Man 基序是 HIV-1 的主要碳水化合物中和决定簇,并表明微生物多糖的遗传调节是一种能够诱导针对 HIV-1 聚糖的抗体反应的免疫原的途径。