Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
ACS Nano. 2010 Mar 23;4(3):1587-95. doi: 10.1021/nn901819n.
Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct ordered metal oxide-graphene nanocomposites. A new class of layered nanocomposites is formed containing stable, ordered alternating layers of nanocrystalline metal oxides with graphene or graphene stacks. Alternatively, the graphene or graphene stacks can be incorporated into liquid-crystal-templated nanoporous structures to form high surface area, conductive networks. The self-assembly method can also be used to fabricate free-standing, flexible metal oxide-graphene nanocomposite films and electrodes. We have investigated the Li-ion insertion properties of the self-assembled electrodes for energy storage and show that the SnO2-graphene nanocomposite films can achieve near theoretical specific energy density without significant charge/discharge degradation.
表面活性剂或聚合物导向的自组装已被广泛用于制备纳米结构的金属氧化物、半导体和聚合物,但这种方法主要限于两相材料、有机/无机杂化材料以及基于纳米颗粒或聚合物的纳米复合材料。具有更复杂、多尺度和多相结构的自组装纳米结构的研究虽然取得了一定的成功,但仍然有限。在这里,我们展示了一种使用石墨烯作为基本构建块的三元自组装方法,用于构建有序的金属氧化物-石墨烯纳米复合材料。形成了一类新型的层状纳米复合材料,其中包含稳定、有序的纳米晶金属氧化物与石墨烯或石墨烯堆叠交替层。或者,石墨烯或石墨烯堆叠可以被纳入液晶模板化的纳米多孔结构中,以形成具有高表面积的导电网络。该自组装方法还可用于制造独立式、灵活的金属氧化物-石墨烯纳米复合材料薄膜和电极。我们已经研究了自组装电极的锂离子插入性能,用于储能,并表明 SnO2-石墨烯纳米复合材料薄膜可以实现接近理论比能量密度,而没有明显的充放电退化。