Suppr超能文献

声化学法实现氧化锡纳米晶体与石墨烯片的均匀耦合作为锂离子电池负极材料

Sonochemistry-enabled uniform coupling of SnO nanocrystals with graphene sheets as anode materials for lithium-ion batteries.

作者信息

Han Xiaoyan, Li Ran, Qiu Shengqiang, Zhang Xiaofang, Zhang Qing, Yang Yingkui

机构信息

Key Laboratory of Resources Green Conversion and Utilization of State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities Wuhan 430074 China

School of Materials Science and Engineering, Hubei University Wuhan 430062 China.

出版信息

RSC Adv. 2019 Feb 18;9(11):5942-5947. doi: 10.1039/c9ra00554d.

Abstract

SnO/graphene nanocomposite was successfully synthesized by a facile sonochemical method from SnCl and graphene oxide (GO) precursors. In the sonochemical process, the Sn is firstly dispersed homogeneously on the GO surface, then oxidized to SnO nanoparticles on both sides of the graphene nanosheets (RGO) obtained by the reduction of GO under continuous ultrasonication. Graphene not only provides a mechanical support to alleviate the volume changes of the SnO anode and prevent nanoparticle agglomeration, but also serves as a conductive network to facilitate charge transfer and Li diffusion. When used as a lithium ion battery (LIB) anode, the SnO/graphene nanocomposite exhibits significantly improved specific capacity (1610 mA h g at 100 mA g), good cycling stability (retaining 87% after 100 cycles), and competitive rate performance (273 mA h g at 500 mA g) compared to those of bare SnO. This sonochemical method can be also applied to the synthesis of other metal-oxide/graphene composites and this work provides a large-scale preparation route for the practical application of SnO in lithium ion batteries.

摘要

通过一种简便的声化学方法,以氯化锡和氧化石墨烯(GO)为前驱体成功合成了SnO/石墨烯纳米复合材料。在声化学过程中,Sn首先均匀地分散在GO表面,然后在连续超声作用下,GO被还原得到石墨烯纳米片(RGO),Sn在其两侧被氧化为SnO纳米颗粒。石墨烯不仅提供机械支撑以缓解SnO阳极的体积变化并防止纳米颗粒团聚,还作为导电网络促进电荷转移和Li扩散。当用作锂离子电池(LIB)阳极时,与纯SnO相比,SnO/石墨烯纳米复合材料表现出显著提高的比容量(在100 mA g下为1610 mA h g)、良好的循环稳定性(100次循环后保留87%)和有竞争力的倍率性能(在500 mA g下为273 mA h g)。这种声化学方法也可应用于合成其他金属氧化物/石墨烯复合材料,这项工作为SnO在锂离子电池中的实际应用提供了一条大规模制备路线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a3/9060868/f016da9b3863/c9ra00554d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验