Suppr超能文献

基于语义验证的本体匹配

Ontology Matching with Semantic Verification.

作者信息

Jean-Mary Yves R, Shironoshita E Patrick, Kabuka Mansur R

机构信息

INFOTECH Soft, Inc., 9200 S Dadeland Blvd. Suite 620, Miami, FL 33156, USA.

出版信息

Web Semant. 2009 Sep 1;7(3):235-251. doi: 10.1016/j.websem.2009.04.001.

Abstract

ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity measure between them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained by combining lexical, structural and extensional matchers with semantic verification, and demonstrate the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies.

摘要

ASMOV(本体自动语义匹配与验证)是一种新颖的算法,它利用两个本体的词汇和结构特征来迭代计算它们之间的相似度度量,得出对齐结果,然后对其进行验证以确保不包含语义不一致性。在本文中,我们描述了ASMOV算法,接着展示了使用2008年OAEI测试来衡量其准确性以及评估其在两种不同叙词表(WordNet和统一医学语言系统(UMLS))上的应用情况的实验结果。这些结果表明,通过将词汇、结构和外延匹配器与语义验证相结合可提高准确性,并证明了使用特定领域叙词表进行专业本体对齐的优势。

相似文献

1
Ontology Matching with Semantic Verification.基于语义验证的本体匹配
Web Semant. 2009 Sep 1;7(3):235-251. doi: 10.1016/j.websem.2009.04.001.
5
Experience in Aligning Anatomical Ontologies.解剖本体对齐经验。
Int J Semant Web Inf Syst. 2007;3(2):1-26. doi: 10.4018/jswis.2007040101.
8
FOntCell: Fusion of Ontologies of Cells.FOntCell:细胞本体融合
Front Cell Dev Biol. 2021 Feb 11;9:562908. doi: 10.3389/fcell.2021.562908. eCollection 2021.

引用本文的文献

5
Tackling the challenges of matching biomedical ontologies.应对生物医学本体匹配的挑战。
J Biomed Semantics. 2018 Jan 15;9(1):4. doi: 10.1186/s13326-017-0170-9.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验