Suppr超能文献

低聚透明质酸含量对二乙烯砜交联透明质酸水凝胶物理、机械和生物学性能的影响。

The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels.

机构信息

Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA.

出版信息

J Biomed Mater Res A. 2010 Aug;94(2):355-70. doi: 10.1002/jbm.a.32704.

Abstract

In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1 x 10(6) Da) and HA-o mixtures (HA-o: 0.75-10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA-o was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild subcutaneous inflammatory response in vivo and VCAM-1 expression by endothelial cells (ECs) cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA-o and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromise their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA-o and more biocompatible HMW HA on synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and functional endothelialization can be achieved, and the need to create a mechanically compliant biomaterial for standalone use, circumvented.

摘要

在最近的研究中,我们表明外源性透明质酸低聚物(HA-o)刺激功能性内皮化,尽管天然长链 HA 更具生物惰性,可能更具生物相容性。因此,在这项研究中,通过二乙烯砜(DVS)交联,制备了含有高分子量(HMW)HA(1 x 10(6) Da)和 HA-o 混合物(HA-o:0.75-10 kDa)的水凝胶。研究发现,HA-o 的掺入会影响凝胶的物理和机械性能(流变学、表观交联密度、溶胀比、降解),并在体内轻微增强炎症细胞的募集;通常,增加凝胶中的 DVS 交联剂含量会产生相反的效果,尽管这些凝胶中相对较高浓度的 DVS(创建固体凝胶所需)也会在体内刺激轻度皮下炎症反应,并在培养的内皮细胞(ECs)上表达 VCAM-1;无论 DVS 交联程度或 HA-o 含量如何,ICAM 表达水平仍保持非常低。在含有最高量 HA-o 的凝胶上观察到最大的 EC 附着和增殖(MTT 测定)。该研究表明,HA-o 的有益 EC 反应和 HA 的生物相容性在其化学衍生化和交联成水凝胶后基本保持不变。然而,该研究还表明,为了创建固体凝胶而必需的相对较高浓度的 DVS 会损害其生物相容性。此外,即使是这些交联程度较高的凝胶的力学性能也很差,在血管植入的情况下,需要研究其他更合适的交联剂。或者,可以利用这项研究的结果来指导一种方法,该方法基于化学固定化和控制表面呈现生物活性的 HA-o 和更具生物相容性的 HMW HA,而无需使用交联剂,从而实现更好、可预测和功能性的内皮化,并避免为独立使用而创建具有机械顺应性的生物材料的需求。

相似文献

2
Characterization of glycidyl methacrylate - crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers.
Acta Biomater. 2011 Feb;7(2):653-65. doi: 10.1016/j.actbio.2010.08.006. Epub 2010 Aug 13.
3
Physical properties of crosslinked hyaluronic acid hydrogels.
J Mater Sci Mater Med. 2008 Nov;19(11):3335-43. doi: 10.1007/s10856-008-3476-4. Epub 2008 Jun 5.
4
Anti-inflammatory drug delivery from hyaluronic acid hydrogels.
J Biomater Sci Polym Ed. 2004;15(9):1111-9. doi: 10.1163/1568562041753115.
5
Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.
Biomed Res Int. 2015;2015:871218. doi: 10.1155/2015/871218. Epub 2015 May 19.
6
The crosslinking degree controls the mechanical, rheological, and swelling properties of hyaluronic acid microparticles.
J Biomed Mater Res A. 2015 Feb;103(2):730-7. doi: 10.1002/jbm.a.35225. Epub 2014 May 23.
7
Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration.
Tissue Eng Part A. 2021 Jun;27(11-12):806-820. doi: 10.1089/ten.TEA.2020.0197. Epub 2020 Sep 29.
8
Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid.
Carbohydr Polym. 2014 Jan 30;101:203-12. doi: 10.1016/j.carbpol.2013.09.060. Epub 2013 Sep 25.
9
Hyaluronan-based hydrogels via ether-crosslinking: Is HA molecular weight an effective means to tune gel performance?
Int J Biol Macromol. 2020 Feb 1;144:94-101. doi: 10.1016/j.ijbiomac.2019.11.227. Epub 2019 Nov 30.

引用本文的文献

3
Granular Nanofiber-Hydrogel Composite-Programmed Regenerative Inflammation and Adipose Tissue Formation.
Adv Healthc Mater. 2025 Jan;14(3):e2403094. doi: 10.1002/adhm.202403094. Epub 2024 Nov 24.
5
Characterization of a Delivery System Based on a Hyaluronic Acid 3D Scaffold and Gelatin Microparticles.
Polymers (Basel). 2024 Jun 20;16(12):1748. doi: 10.3390/polym16121748.
6
Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering.
Gels. 2023 Jul 21;9(7):588. doi: 10.3390/gels9070588.

本文引用的文献

1
Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain.
Biomed Mater. 2007 Sep;2(3):S142-6. doi: 10.1088/1748-6041/2/3/S11. Epub 2007 Jul 30.
2
Hyaluronic acid cues for functional endothelialization of vascular constructs.
J Tissue Eng Regen Med. 2008 Jan;2(1):22-32. doi: 10.1002/term.61.
3
Extracellular matrix dynamics in development and regenerative medicine.
J Cell Sci. 2008 Feb 1;121(Pt 3):255-64. doi: 10.1242/jcs.006064.
4
Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering.
Biomaterials. 2007 Oct;28(30):4399-408. doi: 10.1016/j.biomaterials.2007.06.007. Epub 2007 Jun 28.
6
The role of hyaluronic acid in wound healing: assessment of clinical evidence.
Am J Clin Dermatol. 2005;6(6):393-402. doi: 10.2165/00128071-200506060-00006.
7
In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold.
FASEB J. 2006 Jan;20(1):103-5. doi: 10.1096/fj.05-4802fje. Epub 2005 Nov 15.
8
Engineering of biomaterials surfaces by hyaluronan.
Biomacromolecules. 2005 May-Jun;6(3):1205-23. doi: 10.1021/bm049346i.
9
Hylaform: a new hyaluronic acid filler.
Facial Plast Surg. 2004 May;20(2):153-5. doi: 10.1055/s-2004-861757.
10
Ultraviolet light-induced modification of crosslinked hyaluronan gels.
J Biomed Mater Res A. 2003 Aug 1;66(2):317-29. doi: 10.1002/jbm.a.10588.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验