Suppr超能文献

对蛋白质-配体复合物结合熵贡献的综合考察。

A comprehensive examination of the contributions to the binding entropy of protein-ligand complexes.

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA.

出版信息

Proteins. 2010 May 15;78(7):1724-35. doi: 10.1002/prot.22689.

Abstract

One of the most important requirements in computer-aided drug design is the ability to reliably evaluate the binding free energies. However, the process of ligand binding is very complex because of the intricacy of the interrelated processes that are difficult to predict and quantify. In fact, the deeper understanding of the origin of the observed binding free energies requires the ability to decompose these free energies to their contributions from different interactions. Furthermore, it is important to evaluate the relative entropic and enthalpic contributions to the overall free energy. Such an evaluation is useful for assessing temperature effects and exploring specialized options in enzyme design. Unfortunately, calculations of binding entropies have been much more challenging than calculations of binding free energies. This work is probably the first to present microscopic evaluation of all of the relevant components to the binding entropy, namely configurational, polar solvation, and hydrophobic entropies. All of these contributions are evaluated by the restraint release approach. The calculated results shed an interesting light on major compensation effects in both the solvation and hydrophobic effect and, despite some overestimate, can provide very useful insight. This study also helps in analyzing some problems with the widely used molecular mechanics/Poisson-Boltzmann surface area approach.

摘要

在计算机辅助药物设计中,最重要的要求之一是能够可靠地评估结合自由能。然而,由于相关过程的复杂性,配体结合过程非常复杂,难以预测和量化。事实上,要深入了解观察到的结合自由能的起源,就需要能够将这些自由能分解为来自不同相互作用的贡献。此外,评估整体自由能的相对熵和焓贡献也很重要。这种评估对于评估温度效应和探索酶设计的特殊方案非常有用。不幸的是,与结合自由能的计算相比,结合熵的计算更具挑战性。这项工作可能是首次对结合熵的所有相关组成部分(即构象、极性溶剂化和疏水熵)进行微观评估。所有这些贡献都通过释放约束的方法进行评估。计算结果揭示了溶剂化和疏水效应中主要补偿效应的有趣方面,尽管存在一些高估,但可以提供非常有用的见解。这项研究还有助于分析广泛使用的分子力学/泊松-玻尔兹曼表面区域方法的一些问题。

相似文献

3
Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
J Chem Inf Model. 2012 May 25;52(5):1199-212. doi: 10.1021/ci300064d. Epub 2012 Apr 24.
4
Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
J Phys Chem B. 2013 May 16;117(19):5793-805. doi: 10.1021/jp3085292. Epub 2013 May 8.
6
Quantifying the entropy of binding for water molecules in protein cavities by computing correlations.
Biophys J. 2015 Feb 17;108(4):928-936. doi: 10.1016/j.bpj.2014.12.035.
7
Solvation thermodynamics of amino acid side chains on a short peptide backbone.
J Chem Phys. 2015 Apr 14;142(14):144502. doi: 10.1063/1.4917076.
8
Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
J Chem Inf Model. 2017 Feb 27;57(2):170-189. doi: 10.1021/acs.jcim.6b00373. Epub 2017 Jan 20.
10

引用本文的文献

3
Full-Length NAD-I Riboswitches Bind a Single Cofactor but Cannot Discriminate against Adenosine Triphosphate.
Biochemistry. 2023 Dec 5;62(23):3396-3410. doi: 10.1021/acs.biochem.3c00391. Epub 2023 Nov 10.
4
Delineating the activity of the potent nicotinic acetylcholine receptor agonists (+)-anatoxin-a and (-)-hosieine-A.
Acta Crystallogr F Struct Biol Commun. 2022 Sep 1;78(Pt 9):313-323. doi: 10.1107/S2053230X22007762. Epub 2022 Aug 9.
5
Enthalpy-Entropy Compensation in Biomolecular Recognition: A Computational Perspective.
ACS Omega. 2021 Apr 20;6(17):11122-11130. doi: 10.1021/acsomega.1c00485. eCollection 2021 May 4.
6
The Energetic Origin of Different Catalytic Activities in Temperature-Adapted Trypsins.
ACS Omega. 2020 Sep 23;5(39):25077-25086. doi: 10.1021/acsomega.0c02401. eCollection 2020 Oct 6.
7
On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations.
J Comput Chem. 2020 Mar 5;41(6):573-586. doi: 10.1002/jcc.26119. Epub 2019 Dec 10.
8
Validating the Water Flooding Approach by Comparing It to Grand Canonical Monte Carlo Simulations.
J Phys Chem B. 2017 Oct 12;121(40):9358-9365. doi: 10.1021/acs.jpcb.7b07726. Epub 2017 Oct 2.
9
Entropy in molecular recognition by proteins.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6563-6568. doi: 10.1073/pnas.1621154114. Epub 2017 Jun 5.
10
Structural characterization of metal binding to a cold-adapted frataxin.
J Biol Inorg Chem. 2015 Jun;20(4):653-64. doi: 10.1007/s00775-015-1251-9. Epub 2015 Apr 2.

本文引用的文献

2
Halogenated benzenes bound within a non-polar cavity in T4 lysozyme provide examples of I...S and I...Se halogen-bonding.
J Mol Biol. 2009 Jan 16;385(2):595-605. doi: 10.1016/j.jmb.2008.10.086. Epub 2008 Nov 6.
3
Information theory-based scoring function for the structure-based prediction of protein-ligand binding affinity.
J Chem Inf Model. 2008 Oct;48(10):1990-8. doi: 10.1021/ci800125k. Epub 2008 Sep 4.
4
Do enthalpy and entropy distinguish first in class from best in class?
Drug Discov Today. 2008 Oct;13(19-20):869-74. doi: 10.1016/j.drudis.2008.07.005. Epub 2008 Aug 26.
5
Calorimetry and thermodynamics in drug design.
Annu Rev Biophys. 2008;37:135-51. doi: 10.1146/annurev.biophys.36.040306.132812.
8
Calculations of solute and solvent entropies from molecular dynamics simulations.
Phys Chem Chem Phys. 2006 Dec 14;8(46):5385-95. doi: 10.1039/b608486a. Epub 2006 Sep 8.
9
PMF scoring revisited.
J Med Chem. 2006 Oct 5;49(20):5895-902. doi: 10.1021/jm050038s.
10
Absolute and relative entropies from computer simulation with applications to ligand binding.
J Phys Chem B. 2005 Apr 7;109(13):6448-56. doi: 10.1021/jp046022f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验