Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
J Phys Chem B. 2013 May 16;117(19):5793-805. doi: 10.1021/jp3085292. Epub 2013 May 8.
Both KNI-10033 and KNI-10075 are high affinity preclinical HIV-1 protease (PR) inhibitors with affinities in the picomolar range. In this work, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the potency of these two HIV-1 PR inhibitors against the wild-type and mutated proteases assuming that potency correlates with the affinity of the drugs for the target protein. The decomposition of the binding free energy reveals the origin of binding affinities or mutation-induced affinity changes. Our calculations indicate that the mutation I50V causes drug resistance against both inhibitors. On the other hand, we predict that the mutant I84V causes drug resistance against KNI-10075 while KNI-10033 is more potent against the I84V mutant compared to wild-type protease. Drug resistance arises mainly from unfavorable shifts in van der Waals interactions and configurational entropy. The latter indicates that neglecting changes in configurational entropy in the computation of relative binding affinities as often done is not appropriate in general. For the bound complex PR(I50V)-KNI-10075, an increased polar solvation free energy also contributes to the drug resistance. The importance of polar solvation free energies is revealed when interactions governing the binding of KNI-10033 or KNI-10075 to the wild-type protease are compared to the inhibitors darunavir or GRL-06579A. Although the contributions from intermolecular electrostatic and van der Waals interactions as well as the nonpolar component of the solvation free energy are more favorable for PR-KNI-10033 or PR-KNI-10075 compared to PR-DRV or PR-GRL-06579A, both KNI-10033 and KNI-10075 show a similar affinity as darunavir and a lower binding affinity relative to GRL-06579A. This is because of the polar solvation free energy which is less unfavorable for darunavir or GRL-06579A relative to KNI-10033 or KNI-10075. The importance of the polar solvation as revealed here highlights that structural inspection alone is not sufficient for identifying the key contributions to binding affinities and affinity changes for the design of drugs but that solvation effects must be taken into account. A detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.
KNI-10033 和 KNI-10075 都是高亲和力的抗 HIV-1 蛋白酶(PR)抑制剂,亲和力处于皮摩尔范围。在这项工作中,使用分子力学泊松-玻尔兹曼表面积(MM-PBSA)方法研究了这两种 HIV-1 PR 抑制剂对野生型和突变型蛋白酶的效力,假设效力与药物对靶蛋白的亲和力相关。结合自由能的分解揭示了结合亲和力或突变诱导的亲和力变化的起源。我们的计算表明,I50V 突变导致两种抑制剂的耐药性。另一方面,我们预测 I84V 突变导致 KNI-10075 耐药,而 KNI-10033 对 I84V 突变型比野生型蛋白酶更有效。耐药性主要源于范德华相互作用和构象熵的不利变化。后者表明,在计算相对结合亲和力时通常不适当的是忽略构象熵的变化。对于结合复合物 PR(I50V)-KNI-10075,增加的极性溶剂化自由能也导致耐药性。当比较 KNI-10033 或 KNI-10075 与达拉那韦或 GRL-06579A 结合野生型蛋白酶的相互作用与抑制剂的相互作用时,极性溶剂化自由能的重要性就会显现出来。尽管 KNI-10033 或 KNI-10075 与 PR-DRV 或 PR-GRL-06579A 相比,分子间静电和范德华相互作用以及溶剂化自由能的非极性分量的贡献更为有利,但 KNI-10033 和 KNI-10075 与达拉那韦的亲和力相似,与 GRL-06579A 的结合亲和力较低。这是因为相对于 KNI-10033 或 KNI-10075,极性溶剂化自由能对达拉那韦或 GRL-06579A 不利程度较低。这里揭示的极性溶剂化的重要性强调了仅通过结构检查不足以识别对药物设计的结合亲和力和亲和力变化的关键贡献,必须考虑溶剂化效应。对控制结合和耐药性的分子力的深入了解可能有助于设计针对对当前药物具有耐药性的 HIV-1 PR 变体的新型抑制剂。