Ben-Shalom Ido Y, Pfeiffer-Marek Stefania, Baringhaus Karl-Heinz, Gohlke Holger
Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf , 40225 Düsseldorf, Germany.
LGCR/Pharmaceutical Sciences Operations, Sanofi-Aventis Deutschland GmbH , Industriepark Höchst, 65926 Frankfurt am Main, Germany.
J Chem Inf Model. 2017 Feb 27;57(2):170-189. doi: 10.1021/acs.jcim.6b00373. Epub 2017 Jan 20.
A major uncertainty in binding free energy estimates for protein-ligand complexes by methods such as MM-PB(GB)SA or docking scores results from neglecting or approximating changes in the configurational entropies (ΔS) of the solutes. In MM/PB(GB)SA-type calculations, ΔS has usually been estimated in the rigid rotor, harmonic oscillator approximation. Here, we present the development of a computationally efficient method (termed BEERT) to approximate ΔS in terms of the reduction in translational and rotational freedom of the ligand upon protein-ligand binding (ΔS), starting from the flexible molecule approach. We test the method successfully in binding affinity computations in connection with MM-PBSA effective energies describing changes in gas-phase interactions and solvation free energies. Compared to related work by Ruvinsky and co-workers, clustering bound ligand poses based on interactions with the protein rather than structural similarity of the poses, and an appropriate averaging over single entropies associated with an individual well of the energy landscape of the protein-ligand complex, were found to be crucial. Employing three data sets of protein-ligand complexes of pharmacologically relevant targets for validation, with up to 20, in part related ligands per data set, spanning binding free energies over a range of ≤7 kcal mol, reliable and predictive linear models to estimate binding affinities are obtained in all three cases (R = 0.54-0.72, p < 0.001, root mean squared error S = 0.78-1.44 kcal mol; q = 0.34-0.67, p < 0.05, root mean squared error s = 1.07-1.36 kcal mol). These models are markedly improved compared to considering MM-PBSA effective energies alone, scoring functions, and combinations with ΔS estimates based on the number of rotatable bonds, rigid rotor, harmonic oscillator approximation, or interaction entropy method. As a limitation, our method currently requires a target-specific training data set to identify appropriate scaling coefficients for the MM-PBSA effective energies and BEERT ΔS. Still, our results suggest that the approach is a valuable, computationally more efficient complement to existing rigorous methods for estimating changes in binding free energy across structurally (weakly) related series of ligands binding to one target.
通过诸如MM-PB(GB)SA或对接分数等方法估算蛋白质-配体复合物的结合自由能时,一个主要的不确定性源于忽略或近似溶质构象熵(ΔS)的变化。在MM/PB(GB)SA类型的计算中,ΔS通常是在刚性转子、简谐振子近似下估算的。在此,我们提出了一种计算效率高的方法(称为BEERT),从柔性分子方法出发,根据配体在蛋白质-配体结合时平移和旋转自由度的降低来近似ΔS。我们在结合亲和力计算中成功测试了该方法,该计算与描述气相相互作用和溶剂化自由能变化的MM-PBSA有效能量相关。与Ruvinsky及其同事的相关工作相比,基于与蛋白质的相互作用而非构象的结构相似性对结合的配体构象进行聚类,以及对与蛋白质-配体复合物能量景观的单个阱相关的单个熵进行适当平均,被发现是至关重要的。使用三个药理学相关靶点的蛋白质-配体复合物数据集进行验证,每个数据集多达20个部分相关配体,结合自由能范围≤7 kcal/mol,在所有三种情况下都获得了可靠且具有预测性的线性模型来估计结合亲和力(R = 0.54 - 0.72,p < 0.001,均方根误差S = 0.78 - 1.44 kcal/mol;q = 0.34 - 0.67,p < 0.05,均方根误差s = 1.07 - 1.36 kcal/mol)。与仅考虑MM-PBSA有效能量、评分函数以及基于可旋转键数量、刚性转子、简谐振子近似或相互作用熵方法的ΔS估计的组合相比,这些模型有显著改进。作为一个限制,我们的方法目前需要一个特定靶点的训练数据集来确定MM-PBSA有效能量和BEERT ΔS的适当缩放系数。尽管如此,我们的结果表明,该方法是对现有严格方法的一种有价值的、计算效率更高的补充,用于估计跨结构(弱)相关的一系列配体与一个靶点结合时结合自由能的变化。