McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
Biomaterials. 2010 May;31(15):4249-58. doi: 10.1016/j.biomaterials.2010.02.005. Epub 2010 Feb 25.
Biodegradable elastomeric scaffolds are of increasing interest for applications in soft tissue repair and regeneration, particularly in mechanically active settings. The rate at which such a scaffold should degrade for optimal outcomes, however, is not generally known and the ability to select from similar scaffolds that vary in degradation behavior to allow such optimization is limited. Our objective was to synthesize a family of biodegradable polyurethane elastomers where partial substitution of polyester segments with polycarbonate segments in the polymer backbone would lead to slower degradation behavior. Specifically, we synthesized poly(ester carbonate)urethane ureas (PECUUs) using a blended soft segment of poly(caprolactone) (PCL) and poly(1,6-hexamethylene carbonate) (PHC), a 1,4-diisocyanatobutane hard segment and chain extension with putrescine. Soft segment PCL/PHC molar ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 were investigated. Polymer tensile strengths varied from 14 to 34 MPa with breaking strains of 660-875%, initial moduli of 8-24 MPa and 100% recovery after 10% strain. Increased PHC content was associated with softer, more distensible films. Scaffolds produced by salt leaching supported smooth muscle cell adhesion and growth in vitro. PECUU in aqueous buffer in vitro and subcutaneous implants in rats of PECUU scaffolds showed degradation slower than comparable poly(ester urethane)urea and faster than poly(carbonate urethane)urea. These slower degrading thermoplastic polyurethanes provide opportunities to investigate the role of relative degradation rates for mechanically supportive scaffolds in a variety of soft tissue repair and reconstructive procedures.
可生物降解的弹性体支架越来越受到关注,可用于软组织修复和再生,特别是在机械活跃的环境中。然而,为了达到最佳效果,这种支架的降解速度通常是未知的,而且从具有不同降解行为的类似支架中进行选择以实现这种优化的能力是有限的。我们的目标是合成一系列可生物降解的聚氨酯弹性体,其中聚合物主链中聚酯段的部分取代为聚碳酸酯段,将导致降解行为变慢。具体来说,我们使用聚(己内酯)(PCL)和聚(1,6-己烷碳酸酯)(PHC)的混合软段、1,4-二异氰酸丁烷硬段和腐胺链扩展合成了聚(酯碳酸酯)脲(PECUU)。研究了软段 PCL/PHC 摩尔比为 100/0、75/25、50/50、25/75 和 0/100 的情况。聚合物的拉伸强度从 14 到 34 MPa 不等,断裂应变从 660-875%,初始模量从 8-24 MPa 和 100%应变后的 100%恢复。PHC 含量的增加与更柔软、更有弹性的薄膜有关。通过盐沥滤制备的支架在体外支持平滑肌细胞的黏附和生长。在体外的水性缓冲液中和在大鼠皮下植入 PECUU 支架中,PECUU 的降解速度比可比的聚(酯脲)脲慢,比聚(碳酸酯脲)脲快。这些降解速度较慢的热塑性聚氨酯为研究相对降解速率在各种软组织修复和重建手术中对机械支撑支架的作用提供了机会。