Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA.
Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
Nat Commun. 2021 Jan 19;12(1):446. doi: 10.1038/s41467-020-20610-5.
Complex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.
复杂的生物组织具有高度的粘弹性和动态性。几十年来,人们一直致力于使用促进修复和再生的材料来修复或替代软骨、肌腱、肌肉和脉管系统。然而,使用合成可吸收生物材料很难模仿具有机械、化学和可吸收特性的材料来再现这些组织。在这里,我们报告了一系列可吸收的弹性体样材料,它们在组成上是相同的,并具有不同比例的顺式:反式双键在骨架中。这些特性为控制这些材料的机械和表面侵蚀降解特性提供了协同作用。我们展示了可以在聚合后用生物活性物质对材料进行功能化,并增强细胞黏附性。此外,体内大鼠模型表明,降解和吸收取决于弹性体中的琥珀酸化学计量,结果显示炎症有限,这突出了它们在软组织再生和药物输送中的潜在用途。