Suppr超能文献

气道感觉神经阻滞与人类呼吸困难。

Blockade of airway sensory nerves and dyspnea in humans.

机构信息

Division of Pulmonary Medicine - MC1321, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-1321, USA.

出版信息

Pulm Pharmacol Ther. 2010 Aug;23(4):279-82. doi: 10.1016/j.pupt.2010.02.002. Epub 2010 Feb 25.

Abstract

Evidence has accumulated from previous studies that vagal fibers in the lungs are involved in the genesis of dyspnea. In a series of human studies, based on our previous animal data (J Physiol 1998; 508:109-18; J Appl Physiol 1998; 84:417-24; J Appl Physiol 2003; 95:1315-24) we established that intravenous adenosine has a dyspnogenic effect (J Appl Physiol 2005; 98:180-5; Respir Res 2006; 7:139; Pulm Pharmacol Ther 2008; 21:208-13), strongly implicating a role for vagal C-fibers in the genesis of dyspnea. We have now analyzed the relative effects of blockade of vagal C-fibers by two methods and routes of delivery: by inhibition of the sodium channel and interruption of action potential conduction in the nerve by inhaled local anesthetic (lidocaine), and by blockade by systemic theophylline, a known, nonselective adenosine receptor antagonist. Both techniques significantly (p < 0.05) attenuated the dyspneic response to intravenous adenosine. However, the attenuation was significantly (p < 0.05) greater with pretreatment with systemic theophylline (mean change in response, DeltaAUC -44%) versus pretreatment with inhaled lidocaine (mean change in response, DeltaAUC -11.8%). These differences in the results of airway sensory nerve blockade probably reflect different populations of C fiber receptors and may explain conflicting results of previous studies of dyspnea and airway anesthesia.

摘要

先前的研究已经积累了证据,表明肺部的迷走神经纤维参与了呼吸困难的发生。在一系列基于我们先前动物数据的人类研究中(J Physiol 1998; 508:109-18; J Appl Physiol 1998; 84:417-24; J Appl Physiol 2003; 95:1315-24),我们证实静脉内给予腺苷具有呼吸困难的作用(J Appl Physiol 2005; 98:180-5; Respir Res 2006; 7:139; Pulm Pharmacol Ther 2008; 21:208-13),强烈提示迷走神经 C 纤维在呼吸困难的发生中起作用。我们现在分析了两种方法和两种给药途径阻断迷走神经 C 纤维的相对效果:通过抑制钠离子通道和吸入局部麻醉剂(利多卡因)中断神经中的动作电位传导,以及通过全身茶碱(一种已知的非选择性腺苷受体拮抗剂)阻断。这两种技术都显著(p < 0.05)减轻了静脉内给予腺苷引起的呼吸困难反应。然而,与吸入利多卡因预处理(反应的平均变化,DeltaAUC -44%)相比,全身茶碱预处理(反应的平均变化,DeltaAUC -11.8%)的衰减作用显著(p < 0.05)。气道感觉神经阻滞结果的这些差异可能反映了 C 纤维受体的不同群体,并可能解释先前关于呼吸困难和气道麻醉的研究结果存在冲突的原因。

相似文献

1
Blockade of airway sensory nerves and dyspnea in humans.
Pulm Pharmacol Ther. 2010 Aug;23(4):279-82. doi: 10.1016/j.pupt.2010.02.002. Epub 2010 Feb 25.
2
Effects of airway anesthesia on dyspnea and ventilatory response to intravenous injection of adenosine in healthy human subjects.
Pulm Pharmacol Ther. 2008;21(1):208-13. doi: 10.1016/j.pupt.2007.02.004. Epub 2007 Mar 5.
3
Differential nerve block. Direct measurements on individual myelinated and unmyelinated dorsal root axons.
Anesthesiology. 1996 Jun;84(6):1455-64. doi: 10.1097/00000542-199606000-00022.
4
Theophylline inhibits the cough reflex through a novel mechanism of action.
J Allergy Clin Immunol. 2014 Jun;133(6):1588-98. doi: 10.1016/j.jaci.2013.11.017. Epub 2014 Jan 7.
5
Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors.
PLoS One. 2014 Apr 3;9(4):e91763. doi: 10.1371/journal.pone.0091763. eCollection 2014.
6
Intravenous adenosine activates diffuse nociceptive inhibitory controls in humans.
J Appl Physiol (1985). 2013 Sep 1;115(5):697-703. doi: 10.1152/japplphysiol.00027.2013. Epub 2013 Jul 18.
7
Perivagal antagonist treatment in rats selectively blocks the reflex and afferent responses of vagal lung C fibers to intravenous agonists.
J Appl Physiol (1985). 2013 Feb;114(3):361-70. doi: 10.1152/japplphysiol.00977.2012. Epub 2012 Dec 6.
10

引用本文的文献

1
Intravenous versus intracuff alkalinized lidocaine to prevent postoperative sore throat: a prospective randomized controlled trial.
Pan Afr Med J. 2024 May 24;48:18. doi: 10.11604/pamj.2024.48.18.40317. eCollection 2024.
4
Acute dyspnea in the emergency department: a clinical review.
Intern Emerg Med. 2023 Aug;18(5):1491-1507. doi: 10.1007/s11739-023-03322-8. Epub 2023 Jun 2.
5
fMRI studies evaluating central respiratory control in humans.
Front Neural Circuits. 2022 Sep 23;16:982963. doi: 10.3389/fncir.2022.982963. eCollection 2022.
6
The effect of intravenous lidocaine on propofol dosage in painless bronchoscopy of patients with COPD.
Front Surg. 2022 Sep 15;9:872916. doi: 10.3389/fsurg.2022.872916. eCollection 2022.
7
A review of the effects of ticagrelor on adenosine concentration and its clinical significance.
Pharmacol Rep. 2021 Dec;73(6):1551-1564. doi: 10.1007/s43440-021-00309-0. Epub 2021 Jul 20.
8
P2X Receptors: Potential Therapeutic Targets for Symptoms Associated With Lung Cancer - A Mini Review.
Front Oncol. 2021 Jun 29;11:691956. doi: 10.3389/fonc.2021.691956. eCollection 2021.
9
Caffeinated Beverage Intake, Dyspnea With Ticagrelor, and Cardiovascular Outcomes: Insights From the PEGASUS-TIMI 54 Trial.
J Am Heart Assoc. 2020 May 18;9(10):e015785. doi: 10.1161/JAHA.119.015785. Epub 2020 May 15.
10
Vagal Afferent Innervation of the Airways in Health and Disease.
Physiol Rev. 2016 Jul;96(3):975-1024. doi: 10.1152/physrev.00039.2015.

本文引用的文献

1
18F-fluorodeoxyglucose positron emission tomographic imaging of pulmonary functions, pathology, and drug delivery.
Proc Am Thorac Soc. 2009 Aug 15;6(5):477-85. doi: 10.1513/pats.200904-023AW.
2
Airway nerves and dyspnea associated with inflammatory airway disease.
Respir Physiol Neurobiol. 2009 May 30;167(1):36-44. doi: 10.1016/j.resp.2008.11.012. Epub 2008 Dec 24.
3
Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs.
Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1572-84. doi: 10.1152/ajpregu.90382.2008. Epub 2008 Sep 3.
4
Respiratory sensations evoked by activation of bronchopulmonary C-fibers.
Respir Physiol Neurobiol. 2009 May 30;167(1):26-35. doi: 10.1016/j.resp.2008.05.006. Epub 2008 May 18.
5
Effects of airway anesthesia on dyspnea and ventilatory response to intravenous injection of adenosine in healthy human subjects.
Pulm Pharmacol Ther. 2008;21(1):208-13. doi: 10.1016/j.pupt.2007.02.004. Epub 2007 Mar 5.
6
The pulmonary effects of intravenous adenosine in asthmatic subjects.
Respir Res. 2006 Nov 30;7(1):139. doi: 10.1186/1465-9921-7-139.
7
Experimentally induced cough.
Pulm Pharmacol Ther. 2007;20(4):319-24. doi: 10.1016/j.pupt.2006.10.003. Epub 2006 Oct 14.
8
Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs.
J Physiol. 2006 Sep 1;575(Pt 2):481-90. doi: 10.1113/jphysiol.2006.109371. Epub 2006 Jun 22.
9
How does lobeline injected intravenously produce a cough?
Respir Physiol Neurobiol. 2005 Jan 15;145(1):79-90. doi: 10.1016/j.resp.2004.09.001.
10
Intravenous adenosine and dyspnea in humans.
J Appl Physiol (1985). 2005 Jan;98(1):180-5. doi: 10.1152/japplphysiol.00913.2004. Epub 2004 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验