Department of Physics, Brown University, Providence, Rhode Island 02912, USA.
Langmuir. 2010 Jun 1;26(11):8161-73. doi: 10.1021/la9044682.
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
我们研究了垂直于化学反应表面的双电层施加电场的影响。我们的目标是阐明表面化学如何影响通过电场控制微纳流系统的潜力,我们称之为电流体门控。首先对金属氧化物-电解质 (MOE) 电容器的充电进行了分析建模。我们应用双电层的泊松-玻尔兹曼描述,并在固液界面处施加离子化表面基团与溶液之间的化学平衡。预测具有反应性的表面将作为缓冲器,通过响应施加的电场来质子化或去质子化来调节双电层中的电荷。我们展示了电荷密度和双电层的电化学势对施加电场、离子化表面基团的密度和离解常数以及电解质的离子强度和 pH 的依赖性。我们模拟了两种广泛使用的具有不同表面化学性质的氧化物绝缘体 SiO2 和 Al2O3 的响应。我们还考虑了由双电层的非线性行为和氧化物材料的介电强度对电流体门控的限制,这些限制是在 MOE 配置下对 SiO2 和 Al2O3 薄膜进行测量得到的。我们的结果阐明了化学反应表面对施加电场的响应,这对于理解实际设备中的电流体效应至关重要。