Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
Nucleic Acids Res. 2010 Jul;38(12):3963-74. doi: 10.1093/nar/gkq108. Epub 2010 Mar 1.
Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae BER protein, Ntg1, relocalizes to organelles containing elevated oxidative DNA damage, indicating a novel mechanism of regulation for BER. We propose that dynamic localization of BER proteins is modulated by constituents of stress response pathways. In an effort to mechanistically define these regulatory components, the elements necessary for nuclear and mitochondrial localization of Ntg1 were identified, including a bipartite classical nuclear localization signal, a mitochondrial matrix targeting sequence and the classical nuclear protein import machinery. Our results define a major regulatory system for BER which when compromised, confers a mutator phenotype and sensitizes cells to the cytotoxic effects of DNA damage.
许多人类疾病都是由于未修复的氧化 DNA 损伤引起的。碱基切除修复(BER)负责修复发生在细胞核和线粒体中的氧化 DNA 损伤。尽管 BER 在维持基因组稳定性方面非常重要,但关于这种进化上保守的修复途径的调控知之甚少。酿酒酵母的 BER 蛋白 Ntg1 重新定位到含有高氧化 DNA 损伤的细胞器中,这表明 BER 的调控存在一种新的机制。我们提出,BER 蛋白的动态定位受应激反应途径成分的调节。为了从机制上定义这些调节成分,确定了 Ntg1 的核和线粒体定位所必需的元件,包括一个双组分经典核定位信号、一个线粒体基质靶向序列和经典的核蛋白输入机制。我们的研究结果定义了 BER 的主要调控系统,当该系统受到干扰时,会导致突变表型,并使细胞对 DNA 损伤的细胞毒性作用敏感。