Suppr超能文献

由于DNA修复缺陷导致的慢性氧化性DNA损伤会引起酿酒酵母中的染色体不稳定。

Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae.

作者信息

Degtyareva Natalya P, Chen Lingling, Mieczkowski Piotr, Petes Thomas D, Doetsch Paul W

机构信息

Dept. of Biochemistry, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA.

出版信息

Mol Cell Biol. 2008 Sep;28(17):5432-45. doi: 10.1128/MCB.00307-08. Epub 2008 Jun 30.

Abstract

Oxidative DNA damage is likely to be involved in the etiology of cancer and is thought to accelerate tumorigenesis via increased mutation rates. However, the majority of malignant cells acquire a specific type of genomic instability characterized by large-scale genomic rearrangements, referred to as chromosomal instability (CIN). The molecular mechanisms underlying CIN are not entirely understood. We utilized Saccharomyces cerevisiae as a model system to delineate the relationship between genotoxic stress and CIN. It was found that elevated levels of chronic, unrepaired oxidative DNA damage caused chromosomal aberrations at remarkably high frequencies under both selective and nonselective growth conditions. In this system, exceeding the cellular capacity to appropriately manage oxidative DNA damage resulted in a "gain-of-CIN" phenotype and led to profound karyotypic instability. These results illustrate a novel mechanism for genome destabilization that is likely to be relevant to human carcinogenesis.

摘要

氧化性DNA损伤可能参与癌症的病因学,并被认为通过增加突变率加速肿瘤发生。然而,大多数恶性细胞获得了一种特定类型的基因组不稳定,其特征是大规模基因组重排,称为染色体不稳定(CIN)。CIN潜在的分子机制尚未完全了解。我们利用酿酒酵母作为模型系统来描绘基因毒性应激与CIN之间的关系。研究发现,在选择性和非选择性生长条件下,慢性、未修复的氧化性DNA损伤水平升高会导致染色体畸变频率显著增高。在这个系统中,超过细胞适当处理氧化性DNA损伤的能力会导致“CIN获得”表型,并导致深刻的核型不稳定。这些结果说明了一种基因组不稳定的新机制,这可能与人类致癌作用相关。

相似文献

1
Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae.
Mol Cell Biol. 2008 Sep;28(17):5432-45. doi: 10.1128/MCB.00307-08. Epub 2008 Jun 30.
2
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Yeast. 2017 Nov;34(11):447-458. doi: 10.1002/yea.3247. Epub 2017 Sep 26.
3
Reduced levels of DNA polymerase delta induce chromosome fragile site instability in yeast.
Mol Cell Biol. 2008 Sep;28(17):5359-68. doi: 10.1128/MCB.02084-07. Epub 2008 Jun 30.
4
Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells.
J Biol Chem. 2004 May 21;279(21):22585-94. doi: 10.1074/jbc.M400468200. Epub 2004 Mar 12.
7
Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
Mol Cell Biol. 2005 Jun;25(12):5196-204. doi: 10.1128/MCB.25.12.5196-5204.2005.
8
Nucleotide excision repair deficiency causes elevated levels of chromosome gain in Saccharomyces cerevisiae.
DNA Repair (Amst). 2004 Feb 3;3(2):127-34. doi: 10.1016/j.dnarep.2003.10.003.
10
Reduced kinase activity of polo kinase Cdc5 affects chromosome stability and DNA damage response in S. cerevisiae.
Cell Cycle. 2016 Nov;15(21):2906-2919. doi: 10.1080/15384101.2016.1222338. Epub 2016 Aug 26.

引用本文的文献

1
RNA-DNA Differences: Mechanisms, Oxidative Stress, Transcriptional Fidelity, and Health Implications.
Antioxidants (Basel). 2025 Apr 30;14(5):544. doi: 10.3390/antiox14050544.
2
Chemical Composition, and Antimutagenic Activities of Ethanolic and Aqueous Extracts of Tigernut ().
Prev Nutr Food Sci. 2022 Jun 30;27(2):198-211. doi: 10.3746/pnf.2022.27.2.198.
3
Associations between polymorphisms in genes of base excision repair pathway and lung cancer risk.
Transl Cancer Res. 2020 Apr;9(4):2780-2800. doi: 10.21037/tcr.2020.02.44.
5
Genomic Instability in Fungal Plant Pathogens.
Genes (Basel). 2020 Apr 14;11(4):421. doi: 10.3390/genes11040421.
6
Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells.
EMBO J. 2019 Oct 1;38(19):e101597. doi: 10.15252/embj.2019101597. Epub 2019 Aug 26.
7
Fluconazole induces ROS in Cryptococcus neoformans and contributes to DNA damage in vitro.
PLoS One. 2018 Dec 7;13(12):e0208471. doi: 10.1371/journal.pone.0208471. eCollection 2018.
8
Piecing Together How Peroxiredoxins Maintain Genomic Stability.
Antioxidants (Basel). 2018 Nov 28;7(12):177. doi: 10.3390/antiox7120177.
9
Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes.
Sci Rep. 2018 Jun 26;8(1):9685. doi: 10.1038/s41598-018-27892-2.
10
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Yeast. 2017 Nov;34(11):447-458. doi: 10.1002/yea.3247. Epub 2017 Sep 26.

本文引用的文献

1
Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9747-52. doi: 10.1073/pnas.0703192104. Epub 2007 May 29.
4
Reactive oxygen species: a breath of life or death?
Clin Cancer Res. 2007 Feb 1;13(3):789-94. doi: 10.1158/1078-0432.CCR-06-2082.
5
Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae.
Nature. 2006 Oct 26;443(7114):1003-7. doi: 10.1038/nature05205.
6
Telomere-related genome instability in cancer.
Cold Spring Harb Symp Quant Biol. 2005;70:197-204. doi: 10.1101/sqb.2005.70.032.
7
Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1065-74. doi: 10.1016/j.dnarep.2006.05.028. Epub 2006 Jul 11.
9
Gene amplification: yeast takes a turn.
Cell. 2006 Jun 30;125(7):1237-40. doi: 10.1016/j.cell.2006.06.012.
10
Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1010-20. doi: 10.1016/j.dnarep.2006.05.027. Epub 2006 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验