Suppr超能文献

cAMP 依赖性信号的激活诱导心脏 Na+-K+泵的氧化修饰并抑制其活性。

Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

机构信息

North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney 2065, Australia.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13712-20. doi: 10.1074/jbc.M109.090225. Epub 2010 Mar 1.

Abstract

Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

摘要

细胞信号可以通过蛋白激酶 C(PKC)依赖性的 NADPH 氧化酶的激活和泵的β亚基(1)的下游氧化修饰(谷氨酰化)来抑制膜 Na(+)-K(+)泵。已经确立 cAMP 依赖性信号也可以调节泵,我们现在检验了这样一个假说,即这种调节可以通过谷氨酰化来介导。暴露于兔心肌细胞中的腺苷酸环化酶激活剂佛司可林增加 NADPH 氧化酶亚基 p47(phox)和 p22(phox)的共免疫沉淀,这是其激活所必需的,并且增加了超氧化物敏感的荧光。佛司可林还增加了 Na(+)-K(+)泵β(1)亚基的谷氨酰化,减少了与α(1)亚基的共免疫沉淀,这些发现与已经确立的 PKC 依赖性信号相似。共免疫沉淀的减少表明,已知对泵功能至关重要的α(1)/β(1)亚基相互作用减少。这与佛司可林减少电压钳内灌流心肌细胞中哇巴因敏感的电致 Na(+)-K(+)泵电流(来自 3:2 Na(+):K(+)交换比)的结果一致。在包含超氧化物歧化酶、PKC 的ε-同工型的抑制肽或 NADPH 氧化酶的抑制肽的情况下,将这些抑制剂加入到灌流细胞内区室的膜片钳溶液中,可以消除泵电流的减少。PKA 和 PLC 的抑制剂也消除了泵的抑制作用。我们的结论是,cAMP 和 PKC 依赖性的心脏 Na(+)-K(+)泵抑制是通过涉及 NADPH 氧化酶激活和泵β(1)亚基的谷氨酰化的共同下游氧化信号通路发生的。

相似文献

1
Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.
J Biol Chem. 2010 Apr 30;285(18):13712-20. doi: 10.1074/jbc.M109.090225. Epub 2010 Mar 1.
2
Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.
J Physiol. 2013 Jun 15;591(12):2999-3015. doi: 10.1113/jphysiol.2013.252817. Epub 2013 Apr 15.
3
Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.
Am J Physiol Cell Physiol. 2009 Apr;296(4):C693-700. doi: 10.1152/ajpcell.00648.2008. Epub 2009 Feb 4.
4
Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.
Circ Res. 2009 Jul 17;105(2):185-93. doi: 10.1161/CIRCRESAHA.109.199547. Epub 2009 Jun 18.
5
Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.
Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C239-50. doi: 10.1152/ajpcell.00392.2014. Epub 2015 Jun 17.
7
β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.
Am J Physiol Cell Physiol. 2015 Sep 1;309(5):C286-95. doi: 10.1152/ajpcell.00071.2015. Epub 2015 Jun 10.
8
Activation of the cAMP-protein kinase A pathway facilitates Na+ translocation by the Na+-K+ pump in guinea-pig ventricular myocytes.
J Physiol. 2000 Mar 15;523 Pt 3(Pt 3):561-74. doi: 10.1111/j.1469-7793.2000.t01-2-00561.x.
9
Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump.
J Biol Chem. 2012 Apr 6;287(15):12353-64. doi: 10.1074/jbc.M112.340893. Epub 2012 Feb 21.
10

引用本文的文献

2
Physiological Effects of the Electrogenic Current Generated by the Na/K Pump in Mammalian Articular Chondrocytes.
Bioelectricity. 2020 Sep 1;2(3):258-268. doi: 10.1089/bioe.2020.0036. Epub 2020 Sep 16.
3
FXYD proteins and sodium pump regulatory mechanisms.
J Gen Physiol. 2021 Apr 5;153(4). doi: 10.1085/jgp.202012633.
4
Control of cardiac contraction by sodium: Promises, reckonings, and new beginnings.
Cell Calcium. 2020 Jan;85:102129. doi: 10.1016/j.ceca.2019.102129. Epub 2019 Nov 22.
7
Protein Interaction and Na/K-ATPase-Mediated Signal Transduction.
Molecules. 2017 Jun 14;22(6):990. doi: 10.3390/molecules22060990.
8
Noradrenergic β-Adrenoceptor-Mediated Intracellular Molecular Mechanism of Na-K ATPase Subunit Expression in C6 Cells.
Cell Mol Neurobiol. 2018 Mar;38(2):441-457. doi: 10.1007/s10571-017-0488-y. Epub 2017 Mar 28.
9
"Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols.
Front Physiol. 2016 Aug 2;7:314. doi: 10.3389/fphys.2016.00314. eCollection 2016.
10
Protein Thiol Redox Signaling in Monocytes and Macrophages.
Antioxid Redox Signal. 2016 Nov 20;25(15):816-835. doi: 10.1089/ars.2016.6697. Epub 2016 Jul 13.

本文引用的文献

1
Isoform specificity of the Na/K-ATPase association and regulation by phospholemman.
J Biol Chem. 2009 Sep 25;284(39):26749-57. doi: 10.1074/jbc.M109.047357. Epub 2009 Jul 28.
2
Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.
Circ Res. 2009 Jul 17;105(2):185-93. doi: 10.1161/CIRCRESAHA.109.199547. Epub 2009 Jun 18.
3
FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C.
Am J Physiol Cell Physiol. 2009 Jun;296(6):C1346-55. doi: 10.1152/ajpcell.00523.2008. Epub 2009 Apr 1.
4
Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.
Am J Physiol Cell Physiol. 2009 Apr;296(4):C693-700. doi: 10.1152/ajpcell.00648.2008. Epub 2009 Feb 4.
5
Functional roles of Na,K-ATPase subunits.
Curr Opin Nephrol Hypertens. 2008 Sep;17(5):526-32. doi: 10.1097/MNH.0b013e3283036cbf.
6
Epac and PKA: a tale of two intracellular cAMP receptors.
Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):651-62. doi: 10.1111/j.1745-7270.2008.00438.x.
7
Reconciling the chemistry and biology of reactive oxygen species.
Nat Chem Biol. 2008 May;4(5):278-86. doi: 10.1038/nchembio.85.
8
Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during beta-adrenergic stimulation in mouse ventricular myocytes.
Circulation. 2008 Apr 8;117(14):1849-55. doi: 10.1161/CIRCULATIONAHA.107.754051. Epub 2008 Mar 24.
10
Opposing effects of coupled and uncoupled NOS activity on the Na+-K+ pump in cardiac myocytes.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C572-8. doi: 10.1152/ajpcell.00242.2007. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验