North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney 2065, Australia.
J Biol Chem. 2010 Apr 30;285(18):13712-20. doi: 10.1074/jbc.M109.090225. Epub 2010 Mar 1.
Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.
细胞信号可以通过蛋白激酶 C(PKC)依赖性的 NADPH 氧化酶的激活和泵的β亚基(1)的下游氧化修饰(谷氨酰化)来抑制膜 Na(+)-K(+)泵。已经确立 cAMP 依赖性信号也可以调节泵,我们现在检验了这样一个假说,即这种调节可以通过谷氨酰化来介导。暴露于兔心肌细胞中的腺苷酸环化酶激活剂佛司可林增加 NADPH 氧化酶亚基 p47(phox)和 p22(phox)的共免疫沉淀,这是其激活所必需的,并且增加了超氧化物敏感的荧光。佛司可林还增加了 Na(+)-K(+)泵β(1)亚基的谷氨酰化,减少了与α(1)亚基的共免疫沉淀,这些发现与已经确立的 PKC 依赖性信号相似。共免疫沉淀的减少表明,已知对泵功能至关重要的α(1)/β(1)亚基相互作用减少。这与佛司可林减少电压钳内灌流心肌细胞中哇巴因敏感的电致 Na(+)-K(+)泵电流(来自 3:2 Na(+):K(+)交换比)的结果一致。在包含超氧化物歧化酶、PKC 的ε-同工型的抑制肽或 NADPH 氧化酶的抑制肽的情况下,将这些抑制剂加入到灌流细胞内区室的膜片钳溶液中,可以消除泵电流的减少。PKA 和 PLC 的抑制剂也消除了泵的抑制作用。我们的结论是,cAMP 和 PKC 依赖性的心脏 Na(+)-K(+)泵抑制是通过涉及 NADPH 氧化酶激活和泵β(1)亚基的谷氨酰化的共同下游氧化信号通路发生的。