North Shore Heart Research Group, Kolling Institute, St Leonards, New South Wales 2065, Australia.
J Biol Chem. 2012 Apr 6;287(15):12353-64. doi: 10.1074/jbc.M112.340893. Epub 2012 Feb 21.
Glutathionylation of cysteine 46 of the β1 subunit of the Na(+)-K(+) pump causes pump inhibition. However, the crystal structure, known in a state analogous to an E2·2K(+)·P(i) configuration, indicates that the side chain of cysteine 46 is exposed to the lipid bulk phase of the membrane and not expected to be accessible to the cytosolic glutathione. We have examined whether glutathionylation depends on the conformational changes in the Na(+)-K(+) pump cycle as described by the Albers-Post scheme. We measured β1 subunit glutathionylation and function of Na(+)-K(+)-ATPase in membrane fragments and in ventricular myocytes. Signals for glutathionylation in Na(+)-K(+)-ATPase-enriched membrane fragments suspended in solutions that preferentially induce E1ATP and E1Na(3) conformations were much larger than signals in solutions that induce the E2 conformation. Ouabain further reduced glutathionylation in E2 and eliminated an increase seen with exposure to the oxidant peroxynitrite (ONOO(-)). Inhibition of Na(+)-K(+)-ATPase activity after exposure to ONOO(-) was greater when the enzyme had been in the E1Na(3) than the E2 conformation. We exposed myocytes to different extracellular K(+) concentrations to vary the membrane potential and hence voltage-dependent conformational poise. K(+) concentrations expected to shift the poise toward E2 species reduced glutathionylation, and ouabain eliminated a ONOO(-)-induced increase. Angiotensin II-induced NADPH oxidase-dependent Na(+)-K(+) pump inhibition was eliminated by conditions expected to shift the poise toward the E2 species. We conclude that susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump.
半胱氨酸 46 的谷胱甘肽化导致β1 亚基的 Na(+)-K(+)泵抑制。然而,晶体结构表明,在类似于 E2·2K(+)·P(i)构型的状态下,半胱氨酸 46 的侧链暴露于膜的脂质体相中,预计无法与胞质谷胱甘肽接触。我们已经检查了谷胱甘肽化是否依赖于 Albers-Post 方案所描述的 Na(+)-K(+)泵循环中的构象变化。我们在膜片段和心室肌细胞中测量了β1 亚基的谷胱甘肽化和 Na(+)-K(+)-ATP 酶的功能。在优先诱导 E1ATP 和 E1Na(3)构象的溶液中悬浮的 Na(+)-K(+) -ATP 酶丰富的膜片段中,谷胱甘肽化的信号比诱导 E2 构象的溶液中的信号大得多。哇巴因进一步降低了 E2 中的谷胱甘肽化,并消除了暴露于氧化剂过氧亚硝酸盐(ONOO(-))时观察到的增加。暴露于 ONOO(-)后,当酶处于 E1Na(3)而不是 E2 构象时,Na(+)-K(+) -ATP 酶活性的抑制更大。我们使细胞暴露于不同的细胞外 K(+)浓度以改变膜电位,从而改变电压依赖性构象平衡。预计会使平衡向 E2 物种移动的 K(+)浓度会降低谷胱甘肽化,而哇巴因消除了 ONOO(-)诱导的增加。血管紧张素 II 诱导的 NADPH 氧化酶依赖性 Na(+)-K(+)泵抑制被预计会使平衡向 E2 物种移动的条件消除。我们得出结论,β1 亚基对半胱氨酸的谷胱甘肽化的敏感性取决于 Na(+)-K(+)泵的构象平衡。