Institute of Molecular Oncology Foundation, The Italian Foundation for Cancer Research and Dipartimento di Scienze Biomolecolari e Biotecnologie-University of Milan, Milan, Italy.
PLoS Genet. 2010 Feb 26;6(2):e1000858. doi: 10.1371/journal.pgen.1000858.
Cdk1 kinase phosphorylates budding yeast Srs2, a member of UvrD protein family, displays both DNA translocation and DNA unwinding activities in vitro. Srs2 prevents homologous recombination by dismantling Rad51 filaments and is also required for double-strand break (DSB) repair. Here we examine the biological significance of Cdk1-dependent phosphorylation of Srs2, using mutants that constitutively express the phosphorylated or unphosphorylated protein isoforms. We found that Cdk1 targets Srs2 to repair DSB and, in particular, to complete synthesis-dependent strand annealing, likely controlling the disassembly of a D-loop intermediate. Cdk1-dependent phosphorylation controls turnover of Srs2 at the invading strand; and, in absence of this modification, the turnover of Rad51 is not affected. Further analysis of the recombination phenotypes of the srs2 phospho-mutants showed that Srs2 phosphorylation is not required for the removal of toxic Rad51 nucleofilaments, although it is essential for cell survival, when DNA breaks are channeled into homologous recombinational repair. Cdk1-targeted Srs2 displays a PCNA-independent role and appears to have an attenuated ability to inhibit recombination. Finally, the recombination defects of unphosphorylatable Srs2 are primarily due to unscheduled accumulation of the Srs2 protein in a sumoylated form. Thus, the Srs2 anti-recombination function in removing toxic Rad51 filaments is genetically separable from its role in promoting recombinational repair, which depends exclusively on Cdk1-dependent phosphorylation. We suggest that Cdk1 kinase counteracts unscheduled sumoylation of Srs2 and targets Srs2 to dismantle specific DNA structures, such as the D-loops, in a helicase-dependent manner during homologous recombinational repair.
Cdk1 激酶使 budding yeast Srs2 磷酸化,Srs2 是 UvrD 蛋白家族的成员,在体外具有 DNA 易位和 DNA 解旋活性。Srs2 通过拆除 Rad51 丝来防止同源重组,并且还需要双链断裂 (DSB) 修复。在这里,我们使用组成型表达磷酸化或非磷酸化蛋白同工型的突变体来检查 Cdk1 依赖性 Srs2 磷酸化的生物学意义。我们发现 Cdk1 将 Srs2 靶向修复 DSB,特别是完成合成依赖性链退火,可能控制 D 环中间产物的解体。Cdk1 依赖性磷酸化控制 Srs2 在入侵链上的周转;并且,在没有这种修饰的情况下,Rad51 的周转不受影响。对 srs2 磷酸突变体的重组表型的进一步分析表明,尽管 Srs2 磷酸化对于去除有毒 Rad51 核丝是必需的,但对于细胞存活而言并非必需,当 DNA 断裂被引导到同源重组修复中时。Cdk1 靶向的 Srs2 显示出与 PCNA 无关的作用,并且似乎抑制重组的能力减弱。最后,不可磷酸化的 Srs2 的重组缺陷主要是由于 Srs2 蛋白以 sumoylated 形式的不合时宜积累所致。因此,Srs2 在去除有毒 Rad51 丝方面的抗重组功能在遗传上与其促进重组修复的功能分离,后者完全依赖于 Cdk1 依赖性磷酸化。我们认为 Cdk1 激酶拮抗 Srs2 的不合时宜的 sumoylation,并靶向 Srs2 以依赖于解旋酶的方式拆除特定的 DNA 结构,例如 D 环,在同源重组修复过程中。