Suppr超能文献

调控DNA双链断裂定位于核周的机制。

Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.

作者信息

Oza Pranav, Jaspersen Sue L, Miele Adriana, Dekker Job, Peterson Craig L

机构信息

Program in Molecular Medicine, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

出版信息

Genes Dev. 2009 Apr 15;23(8):912-27. doi: 10.1101/gad.1782209.

Abstract

DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population result in large decreases in both intra- and interchromosomal interactions. Using live cell microscopy, we find that changes in chromosome dynamics correlate with relocalization of the DSB to the nuclear periphery. Sequestration to the periphery requires the nuclear envelope protein, Mps3p, and Mps3p-dependent tethering delays recombinational repair of a DSB and enhances gross chromosomal rearrangements. Furthermore, we show that components of the telomerase machinery are recruited to a DSB and that telomerase recruitment is required for its peripheral localization. Based on these findings, we propose that sequestration of unrepaired or slowly repaired DSBs to the nuclear periphery reflects a competition between alternative repair pathways.

摘要

DNA双链断裂(DSB)是细胞中最具危害性的DNA损伤形式之一。在此,我们在酵母细胞中诱导位点特异性DSB,并使用染色体构象捕获技术(3C)监测DSB周围的染色质动态变化。我们发现,在G1期细胞中形成DSB不足以改变染色体动态。然而,在异步细胞群体中形成的DSB会导致染色体内和染色体间相互作用大幅减少。使用活细胞显微镜技术,我们发现染色体动态变化与DSB重新定位到核周边相关。隔离到周边需要核膜蛋白Mps3p,且Mps3p依赖的拴系会延迟DSB的重组修复并增强染色体大片段重排。此外,我们表明端粒酶机制的组分被招募到DSB,且端粒酶招募是其周边定位所必需的。基于这些发现,我们提出将未修复或修复缓慢的DSB隔离到核周边反映了替代修复途径之间的竞争。

相似文献

1
Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.
Genes Dev. 2009 Apr 15;23(8):912-27. doi: 10.1101/gad.1782209.
4
Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage.
J Cell Biol. 2017 Aug 7;216(8):2355-2371. doi: 10.1083/jcb.201610071. Epub 2017 Jun 21.
5
Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery.
Cell Cycle. 2010 Jan 1;9(1):43-9. doi: 10.4161/cc.9.1.10317. Epub 2010 Jan 13.
6
Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
PLoS Genet. 2020 Feb 3;16(2):e1008608. doi: 10.1371/journal.pgen.1008608. eCollection 2020 Feb.
7
Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication.
PLoS Genet. 2015 Aug 11;11(8):e1005283. doi: 10.1371/journal.pgen.1005283. eCollection 2015 Aug.
9
10
RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin.
Mol Cell Biol. 2007 Mar;27(5):1602-13. doi: 10.1128/MCB.01956-06. Epub 2006 Dec 18.

引用本文的文献

1
The ubiquitin protease Ubp10 suppresses the formation of translocations at Cdc13 binding sites.
bioRxiv. 2025 Jun 28:2025.06.27.661970. doi: 10.1101/2025.06.27.661970.
2
Yeast centrosomes act as organizing centers to promote Polo kinase-mediated adaptation to persistent DNA damage.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2414426122. doi: 10.1073/pnas.2414426122. Epub 2025 Jul 2.
3
Rewiring for movements in meiotic prophase: regulators, roles, and evolutionary pathways.
Curr Opin Genet Dev. 2025 Aug;93:102366. doi: 10.1016/j.gde.2025.102366. Epub 2025 Jun 7.
4
Nuclear and genome dynamics underlying DNA double-strand break repair.
Nat Rev Mol Cell Biol. 2025 Mar 17. doi: 10.1038/s41580-025-00828-1.
5
Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair.
Front Cell Dev Biol. 2025 Feb 27;13:1548946. doi: 10.3389/fcell.2025.1548946. eCollection 2025.
7
Msc1 is a nuclear envelope protein that reinforces DNA repair in late mitosis.
iScience. 2024 Jun 11;27(7):110250. doi: 10.1016/j.isci.2024.110250. eCollection 2024 Jul 19.
8
Improved detection of DNA replication fork-associated proteins.
Cell Rep. 2024 May 28;43(5):114178. doi: 10.1016/j.celrep.2024.114178. Epub 2024 May 2.
9
SUN1/2 controls macrophage polarization via modulating nuclear size and stiffness.
Nat Commun. 2023 Oct 12;14(1):6416. doi: 10.1038/s41467-023-42187-5.
10
The SUN-like protein TgSLP1 is essential for nuclear division in the apicomplexan parasite Toxoplasma gondii.
J Cell Sci. 2023 Nov 1;136(21). doi: 10.1242/jcs.260337. Epub 2023 Oct 30.

本文引用的文献

2
Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex.
Mol Cell Biol. 2009 Feb;29(3):835-48. doi: 10.1128/MCB.01009-08. Epub 2008 Dec 1.
3
Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres.
PLoS Genet. 2008 Oct;4(10):e1000236. doi: 10.1371/journal.pgen.1000236. Epub 2008 Oct 24.
4
Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase.
Science. 2008 Oct 24;322(5901):597-602. doi: 10.1126/science.1162790.
5
How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex.
Mol Cell. 2008 Jul 25;31(2):153-65. doi: 10.1016/j.molcel.2008.06.013.
6
Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion.
Science. 2008 Jul 25;321(5888):563-6. doi: 10.1126/science.1157774.
7
Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3.
J Cell Biol. 2007 Dec 3;179(5):845-54. doi: 10.1083/jcb.200706040. Epub 2007 Nov 26.
8
Alternative ends: telomeres and meiosis.
Biochimie. 2008 Jan;90(1):181-9. doi: 10.1016/j.biochi.2007.08.010. Epub 2007 Sep 2.
9
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7).
Science. 2007 Jul 13;317(5835):245-8. doi: 10.1126/science.1140637.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验