Suppr超能文献

肺腺癌的基因表达谱与组织病理学分级和生存相关,但与 EGF-R 状态无关:一项微阵列研究。

Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study.

机构信息

Institute of Pathology, University Hospital Freiburg, Breisacher Str 115a, 79106 Freiburg, Germany.

出版信息

BMC Cancer. 2010 Mar 2;10:77. doi: 10.1186/1471-2407-10-77.

Abstract

BACKGROUND

Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression.

METHODS

Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry.

RESULTS

Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis.

CONCLUSIONS

In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures.

摘要

背景

已经提出了几种不同的基因表达特征,以预测肺腺癌对治疗的反应和临床结局。在此,我们研究了在一个小数据集是否可以重现发表的基因集的元素,以及基于有限样本量的基因表达谱与临床参数(包括组织病理学分级和 EGFR 蛋白表达)的关系。

方法

使用 Affymetrix Human Genome U133A 平台获得了 28 例经病理和临床注释的肺腺癌的基因表达谱。EGFR 状态通过荧光原位杂交和免疫组织化学确定。

结果

使用无监督聚类算法,主要的基因表达特征与组织病理学分级相关,但与免疫组织化学检测到的 EGFR 蛋白表达无关。在有监督分析中,高级别肿瘤的特征,而不是 EGFR 过表达病例的特征,显示出 MAPK 激活和 EGFR 下游其他潜在信号级联的基因集显著富集。在与预后相关的四个不同的已发表基因集中,有三个在与预后良好相关的基因表达特征中显示出富集。

结论

在这个数据集,组织病理学肿瘤分级而不是 EGFR 状态与主要的基因表达特征和反映致癌途径激活的基因集富集相关,这表明高免疫组化 EGFR 评分不一定与导致基因表达模式发生重大变化的下游效应有关。已发表的基因集与患者生存相关;然而,本研究的样本量小,限制了对先前报道的预后基因表达特征的全面验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da05/2843676/57b35c83dbf4/1471-2407-10-77-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验