Suppr超能文献

肺腺癌预后基因表达特征的建立与验证。

Development and validation of a prognostic gene-expression signature for lung adenocarcinoma.

机构信息

Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.

出版信息

PLoS One. 2012;7(9):e44225. doi: 10.1371/journal.pone.0044225. Epub 2012 Sep 7.

Abstract

Although several prognostic signatures have been developed in lung cancer, their application in clinical practice has been limited because they have not been validated in multiple independent data sets. Moreover, the lack of common genes between the signatures makes it difficult to know what biological process may be reflected or measured by the signature. By using classical data exploration approach with gene expression data from patients with lung adenocarcinoma (n = 186), we uncovered two distinct subgroups of lung adenocarcinoma and identified prognostic 193-gene gene expression signature associated with two subgroups. The signature was validated in 4 independent lung adenocarcinoma cohorts, including 556 patients. In multivariate analysis, the signature was an independent predictor of overall survival (hazard ratio, 2.4; 95% confidence interval, 1.2 to 4.8; p = 0.01). An integrated analysis of the signature revealed that E2F1 plays key roles in regulating genes in the signature. Subset analysis demonstrated that the gene signature could identify high-risk patients in early stage (stage I disease), and patients who would have benefit of adjuvant chemotherapy. Thus, our study provided evidence for molecular basis of clinically relevant two distinct two subtypes of lung adenocarcinoma.

摘要

尽管已经开发出了几种用于肺癌的预后标志物,但由于它们尚未在多个独立数据集得到验证,因此在临床实践中的应用受到了限制。此外,标志物之间缺乏共同基因,这使得难以了解该标志物可能反映或衡量哪些生物学过程。通过使用来自肺腺癌患者的基因表达数据(n=186)进行经典的数据挖掘方法,我们发现了肺腺癌的两个不同亚群,并确定了与这两个亚群相关的预后 193 基因基因表达标志物。该标志物在 4 个独立的肺腺癌队列中得到了验证,包括 556 名患者。在多变量分析中,该标志物是总生存期的独立预测因子(风险比,2.4;95%置信区间,1.2 至 4.8;p=0.01)。对该标志物的综合分析表明,E2F1 在调节标志物中的基因方面发挥着关键作用。亚组分析表明,该基因标志物可以识别早期(I 期疾病)高危患者,并使这些患者受益于辅助化疗。因此,我们的研究为临床上相关的两种肺腺癌两个不同亚型提供了分子基础的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd08/3436895/e8e7400d3a01/pone.0044225.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验