Suppr超能文献

蛋白质残基网络的普遍性。

Universality in protein residue networks.

机构信息

Department of Physics and Institute of Complex Systems, University of Strathclyde, Glasgow, United Kingdom.

出版信息

Biophys J. 2010 Mar 3;98(5):890-900. doi: 10.1016/j.bpj.2009.11.017.

Abstract

Residue networks representing 595 nonhomologous proteins are studied. These networks exhibit universal topological characteristics as they belong to the topological class of modular networks formed by several highly interconnected clusters separated by topological cavities. There are some networks that tend to deviate from this universality. These networks represent small-size proteins having <200 residues. This article explains such differences in terms of the domain structure of these proteins. On the other hand, the topological cavities characterizing proteins residue networks match very well with protein binding sites. This study investigates the effect of the cutoff value used in building the residue network. For small cutoff values, <5 A, the cavities found are very large corresponding almost to the whole protein surface. On the contrary, for large cutoff value, >10.0 A, only very large cavities are detected and the networks look very homogeneous. These findings are useful for practical purposes as well as for identifying protein-like complex networks. Finally, this article shows that the main topological class of residue networks is not reproduced by random networks growing according to Erdös-Rényi model or the preferential attachment method of Barabási-Albert. However, the Watts-Strogatz model reproduces very well the topological class as well as other topological properties of residue network. A more biologically appealing modification of the Watts-Strogatz model to describe residue networks is proposed.

摘要

研究了代表 595 个非同源蛋白质的残基网络。这些网络表现出普遍的拓扑特征,因为它们属于由几个高度相互连接的簇组成的模块化网络拓扑类,这些簇由拓扑腔隔开。有些网络往往偏离这种普遍性。这些网络代表的是小尺寸的蛋白质,其残基数小于 200。本文从这些蛋白质的结构域结构方面解释了这些差异。另一方面,残基网络中蛋白质拓扑腔的特征与蛋白质结合位点非常匹配。本研究调查了在构建残基网络时使用的截止值的影响。对于较小的截止值,<5 A,发现的腔非常大,几乎对应整个蛋白质表面。相反,对于较大的截止值,>10.0 A,仅检测到非常大的腔,并且网络看起来非常均匀。这些发现对于实际目的以及识别蛋白质样复杂网络都很有用。最后,本文表明,根据 Erdös-Rényi 模型或 Barabási-Albert 的优先附着方法生长的随机网络无法再现残基网络的主要拓扑类。然而,Watts-Strogatz 模型很好地再现了残基网络的拓扑类以及其他拓扑性质。提出了一种更具生物学吸引力的 Watts-Strogatz 模型修改,用于描述残基网络。

相似文献

1
Universality in protein residue networks.
Biophys J. 2010 Mar 3;98(5):890-900. doi: 10.1016/j.bpj.2009.11.017.
2
Residue network in protein native structure belongs to the universality class of a three-dimensional critical percolation cluster.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):020901. doi: 10.1103/PhysRevE.79.020901. Epub 2009 Feb 24.
3
First encounters on Watts-Strogatz networks and Barabási-Albert networks.
Chaos. 2022 Dec;32(12):123114. doi: 10.1063/5.0127521.
4
Characterization of real-world networks through quantum potentials.
PLoS One. 2021 Jul 13;16(7):e0254384. doi: 10.1371/journal.pone.0254384. eCollection 2021.
6
Multifractal cross-correlation effects in two-variable time series of complex network vertex observables.
Phys Rev E. 2016 Oct;94(4-1):042307. doi: 10.1103/PhysRevE.94.042307. Epub 2016 Oct 12.
7
Thermodynamics of random reaction networks.
PLoS One. 2015 Feb 27;10(2):e0117312. doi: 10.1371/journal.pone.0117312. eCollection 2015.
8
On the effects of memory and topology on the controllability of complex dynamical networks.
Sci Rep. 2020 Oct 15;10(1):17346. doi: 10.1038/s41598-020-74269-5.
9
Coarse graining for synchronization in directed networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056123. doi: 10.1103/PhysRevE.83.056123. Epub 2011 May 25.
10
Dynamics of tipping cascades on complex networks.
Phys Rev E. 2020 Apr;101(4-1):042311. doi: 10.1103/PhysRevE.101.042311.

引用本文的文献

1
A clustering-based biased Monte Carlo approach to protein titration curve prediction.
Proc Int Conf Mach Learn Appl. 2020 Dec;2020. doi: 10.1109/icmla51294.2020.00037. Epub 2021 Feb 23.
2
pyProGA-A PyMOL plugin for protein residue network analysis.
PLoS One. 2021 Jul 30;16(7):e0255167. doi: 10.1371/journal.pone.0255167. eCollection 2021.
3
Group Behavior and Emergence of Cancer Drug Resistance.
Trends Cancer. 2021 Apr;7(4):323-334. doi: 10.1016/j.trecan.2021.01.009. Epub 2021 Feb 20.
4
Topological analysis of SARS CoV-2 main protease.
Chaos. 2020 Jun;30(6):061102. doi: 10.1063/5.0013029.
5
NAPS update: network analysis of molecular dynamics data and protein-nucleic acid complexes.
Nucleic Acids Res. 2019 Jul 2;47(W1):W462-W470. doi: 10.1093/nar/gkz399.
6
Validation and quality assessment of macromolecular structures using complex network analysis.
Sci Rep. 2019 Feb 8;9(1):1678. doi: 10.1038/s41598-019-38658-9.
7
NAPS: Network Analysis of Protein Structures.
Nucleic Acids Res. 2016 Jul 8;44(W1):W375-82. doi: 10.1093/nar/gkw383. Epub 2016 May 5.
10
The effect of edge definition of complex networks on protein structure identification.
Comput Math Methods Med. 2013;2013:365410. doi: 10.1155/2013/365410. Epub 2013 Feb 28.

本文引用的文献

1
Form follows function: shape analysis of protein cavities for receptor-based drug design.
Proteomics. 2009 Jan;9(2):451-9. doi: 10.1002/pmic.200800092.
3
Proteomics, networks and connectivity indices.
Proteomics. 2008 Feb;8(4):750-78. doi: 10.1002/pmic.200700638.
4
The effect of backbone on the small-world properties of protein contact maps.
Phys Biol. 2008 Jan 8;4(4):L1-5. doi: 10.1088/1478-3975/4/4/L01.
5
Network analysis of protein dynamics.
FEBS Lett. 2007 Jun 19;581(15):2776-82. doi: 10.1016/j.febslet.2007.05.021. Epub 2007 May 21.
6
Topological structural classes of complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 2):016103. doi: 10.1103/PhysRevE.75.016103. Epub 2007 Jan 19.
7
A network representation of protein structures: implications for protein stability.
Biophys J. 2005 Dec;89(6):4159-70. doi: 10.1529/biophysj.105.064485. Epub 2005 Sep 8.
8
Subgraph centrality in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056103. doi: 10.1103/PhysRevE.71.056103. Epub 2005 May 6.
9
AISMIG--an interactive server-side molecule image generator.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W705-9. doi: 10.1093/nar/gki438.
10
Self-similarity of complex networks.
Nature. 2005 Jan 27;433(7024):392-5. doi: 10.1038/nature03248.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验