Suppr超能文献

利用复杂网络分析验证和质量评估大分子结构。

Validation and quality assessment of macromolecular structures using complex network analysis.

机构信息

Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia.

Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, Slovenia.

出版信息

Sci Rep. 2019 Feb 8;9(1):1678. doi: 10.1038/s41598-019-38658-9.

Abstract

Validation of three-dimensional structures is at the core of structural determination methods. The local validation criteria, such as deviations from ideal bond length and bonding angles, Ramachandran plot outliers and clashing contacts, are a standard part of structure analysis before structure deposition, whereas the global and regional packing may not yet have been addressed. In the last two decades, three-dimensional models of macromolecules such as proteins have been successfully described by a network of nodes and edges. Amino acid residues as nodes and close contact between the residues as edges have been used to explore basic network properties, to study protein folding and stability and to predict catalytic sites. Using complex network analysis, we introduced common network parameters to distinguish between correct and incorrect three-dimensional protein structures. The analysis showed that correct structures have a higher average node degree, higher graph energy, and lower shortest path length than their incorrect counterparts. Thus, correct protein models are more densely intra-connected, and in turn, the transfer of information between nodes/amino acids is more efficient. Moreover, protein graph spectra were used to investigate model bias in protein structure.

摘要

三维结构的验证是结构测定方法的核心。局部验证标准,如偏离理想键长和键角、Ramachandran 图异常值和碰撞接触,是结构分析在结构提交之前的标准部分,而全局和区域堆积可能尚未解决。在过去的二十年中,蛋白质等大分子的三维模型已经成功地用节点和边的网络来描述。氨基酸残基作为节点,残基之间的近距离接触作为边,用于探索基本的网络特性,研究蛋白质折叠和稳定性,并预测催化位点。使用复杂网络分析,我们引入了常见的网络参数来区分正确和错误的三维蛋白质结构。分析表明,正确的结构比错误的结构具有更高的平均节点度、更高的图能量和更短的最短路径长度。因此,正确的蛋白质模型具有更高的内部连接密度,从而使节点/氨基酸之间的信息传递更有效。此外,还使用蛋白质图频谱来研究蛋白质结构中的模型偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10a6/6368557/33e507666731/41598_2019_38658_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验