Suppr超能文献

结肠黏膜中的表观遗传成熟在小鼠中会持续到婴儿期之后。

Epigenetic maturation in colonic mucosa continues beyond infancy in mice.

机构信息

Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX 77030, USA.

出版信息

Hum Mol Genet. 2010 Jun 1;19(11):2168-76. doi: 10.1093/hmg/ddq095. Epub 2010 Mar 2.

Abstract

Monozygotic twin and other epidemiologic studies indicate that epigenetic processes may play an important role in the pathogenesis of inflammatory bowel diseases that commonly affect the colonic mucosa. The peak onset of these disorders in young adulthood suggests that epigenetic changes normally occurring in the colonic mucosa shortly before adulthood could be important etiologic factors. We assessed developmental changes in colitis susceptibility during the physiologically relevant period of childhood in mice [postnatal day 30 (P30) to P90] and concurrent changes in DNA methylation and gene expression in murine colonic mucosa. Susceptibility to colitis was tested in C57BL/6J mice with the dextran sulfate sodium colitis model. Methylation specific amplification microarray (MSAM) was used to screen for changes in DNA methylation, with validation by bisulfite pyrosequencing. Gene expression changes were analyzed by microarray expression profiling and real time RT-PCR. Mice were more susceptible to chemically induced colitis at P90 than at P30. DNA methylation changes, however, were not extensive; of 23 743 genomic intervals interrogated, only 271 underwent significant methylation alteration during this developmental period. We found an excellent correlation between the MSAM and bisulfite pyrosequencing at 11 gene associated intervals validated (R(2) = 0.89). Importantly, at the genes encoding galectin-1 (Lgals1), and mothers against decapentaplegic homolog 3 or Smad3, both previously implicated in murine colitis, developmental changes in DNA methylation from P30 to P90 were inversely correlated with expression. Colonic mucosal epigenetic maturation continues through early adulthood in the mouse, and may contribute to the age-associated increase in colitis susceptibility. Transcript Profiling: Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), accession numbers: GSE18031 (DNA methylation arrays), GSE19506 (gene expression arrays).

摘要

同卵双胞胎和其他流行病学研究表明,表观遗传过程可能在影响结肠黏膜的炎症性肠病的发病机制中发挥重要作用。这些疾病在年轻成年期的发病高峰表明,成年前结肠黏膜中通常发生的表观遗传变化可能是重要的病因因素。我们评估了在幼年生理相关期(即从出生后第 30 天(P30)到第 90 天)在小鼠中炎症性肠病易感性的发育变化,以及同时在其结肠黏膜中的 DNA 甲基化和基因表达变化。在葡聚糖硫酸钠结肠炎模型中,用 C57BL/6J 小鼠测试结肠炎易感性。采用甲基化特异性扩增微阵列(MSAM)筛选 DNA 甲基化变化,并用亚硫酸氢盐焦磷酸测序进行验证。通过微阵列表达谱和实时 RT-PCR 分析基因表达变化。与 P30 相比,P90 的小鼠对化学诱导结肠炎的易感性更高。然而,DNA 甲基化变化并不广泛;在 23743 个被检测的基因组间隔中,只有 271 个在这一发育期间发生了显著的甲基化改变。我们在 11 个经验证的与基因相关的间隔中发现 MSAM 和亚硫酸氢盐焦磷酸测序之间具有极好的相关性(相关系数 R(2)=0.89)。重要的是,在编码半乳糖凝集素-1(Lgals1)和母系抗 Decapentaplegic 同源物 3 或 Smad3 的基因中,这两个基因都以前与小鼠结肠炎有关,P30 到 P90 的 DNA 甲基化发育变化与表达呈负相关。在小鼠中,结肠黏膜的表观遗传成熟过程持续到成年早期,这可能导致与年龄相关的结肠炎易感性增加。转录谱分析:基因表达综合数据库(http://www.ncbi.nlm.nih.gov/geo/),注册号:GSE18031(DNA 甲基化芯片),GSE19506(基因表达芯片)。

相似文献

1
Epigenetic maturation in colonic mucosa continues beyond infancy in mice.
Hum Mol Genet. 2010 Jun 1;19(11):2168-76. doi: 10.1093/hmg/ddq095. Epub 2010 Mar 2.
3
Genes with aberrant expression in murine preneoplastic intestine show epigenetic and expression changes in normal mucosa of colon cancer patients.
Cancer Prev Res (Phila). 2013 Nov;6(11):1171-81. doi: 10.1158/1940-6207.CAPR-13-0198. Epub 2013 Oct 29.
4
An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling.
J Immunol. 2011 Jun 1;186(11):6505-14. doi: 10.4049/jimmunol.1002805. Epub 2011 Apr 22.
6
Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice.
FASEB J. 2011 May;25(5):1449-60. doi: 10.1096/fj.10-172205. Epub 2011 Jan 12.
7
Loss of Smad5 leads to the disassembly of the apical junctional complex and increased susceptibility to experimental colitis.
Am J Physiol Gastrointest Liver Physiol. 2011 Apr;300(4):G586-97. doi: 10.1152/ajpgi.00041.2010. Epub 2011 Jan 6.
8
Upregulation of activin signaling in experimental colitis.
Am J Physiol Gastrointest Liver Physiol. 2009 Oct;297(4):G768-80. doi: 10.1152/ajpgi.90631.2008. Epub 2009 Jul 30.
9
Altered phenotype of dextran sulfate sodium colitis in interferon regulatory factor-1 knock-out mice.
J Gastroenterol Hepatol. 2005 Mar;20(3):371-80. doi: 10.1111/j.1440-1746.2005.03573.x.
10
DNA Methylation Profiling in Inflammatory Bowel Disease Provides New Insights into Disease Pathogenesis.
J Crohns Colitis. 2016 Jan;10(1):77-86. doi: 10.1093/ecco-jcc/jjv176. Epub 2015 Sep 28.

引用本文的文献

1
INVITED COMMENTARY on Andersen S, et al. Developmental Windows of Environmental Vulnerability for Inflammatory Bowel Disease.
J Pediatr Clin Pract. 2024 Mar 16;11:200104. doi: 10.1016/j.jpedcp.2024.200104. eCollection 2024 Mar.
2
Epigenetics in IBD: a conceptual framework for disease pathogenesis.
Frontline Gastroenterol. 2022 Jun 7;13(e1):e22-e27. doi: 10.1136/flgastro-2022-102120. eCollection 2022.
3
Increased number of children in households may protect against inflammatory bowel disease.
Pediatr Res. 2023 Feb;93(3):535-540. doi: 10.1038/s41390-022-02149-x. Epub 2022 Jun 14.
4
Microbiota Modulates Cardiac Transcriptional Responses to Intermittent Hypoxia and Hypercapnia.
Front Physiol. 2021 Jun 25;12:680275. doi: 10.3389/fphys.2021.680275. eCollection 2021.
5
Bacteria-related changes in host DNA methylation and the risk for CRC.
Gut Microbes. 2020 Nov 9;12(1):1800898. doi: 10.1080/19490976.2020.1800898.
6
Weight loss is a sufficient and economical single outcome measure of murine dextran sulfate sodium colitis.
FASEB Bioadv. 2019 Jul 1;1(8):493-497. doi: 10.1096/fba.2019-00035. eCollection 2019 Aug.
7
ATCC 8483 monotherapy is superior to traditional fecal transplant and multi-strain bacteriotherapy in a murine colitis model.
Gut Microbes. 2019;10(4):504-520. doi: 10.1080/19490976.2018.1560753. Epub 2019 Jan 21.
10
Recent Advances in the Etiopathogenesis of Inflammatory Bowel Disease: The Role of Omics.
Mol Diagn Ther. 2018 Feb;22(1):11-23. doi: 10.1007/s40291-017-0298-4.

本文引用的文献

1
BDNF and PDE4, but not the GRPR, regulate viability of human medulloblastoma cells.
J Mol Neurosci. 2010 Mar;40(3):303-10. doi: 10.1007/s12031-009-9221-8. Epub 2009 Jul 30.
2
Intestinal barrier function: molecular regulation and disease pathogenesis.
J Allergy Clin Immunol. 2009 Jul;124(1):3-20; quiz 21-2. doi: 10.1016/j.jaci.2009.05.038.
3
Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development.
Hum Mol Genet. 2009 Aug 15;18(16):3026-38. doi: 10.1093/hmg/ddp241. Epub 2009 May 20.
4
Distinct Methylation of IFNG in the Gut.
J Interferon Cytokine Res. 2009 Jul;29(7):407-14. doi: 10.1089/jir.2008.0109.
5
The evolving epidemiology of inflammatory bowel disease.
Curr Opin Gastroenterol. 2009 Jul;25(4):301-5. doi: 10.1097/MOG.0b013e32832b12ef.
6
Histone modifications at human enhancers reflect global cell-type-specific gene expression.
Nature. 2009 May 7;459(7243):108-12. doi: 10.1038/nature07829. Epub 2009 Mar 18.
7
Effect of MDR1 gene promoter methylation in patients with ulcerative colitis.
Int J Mol Med. 2009 Apr;23(4):521-7. doi: 10.3892/ijmm_00000160.
8
Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis.
Eur J Clin Invest. 2009 Feb;39(2):145-56. doi: 10.1111/j.1365-2362.2008.02076.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验