Suppr超能文献

分枝杆菌 Mannosylated 细胞壁决定因素的多样性影响其对宿主的适应。

Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host.

机构信息

Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.

出版信息

Tuberculosis (Edinb). 2010 Mar;90(2):84-93. doi: 10.1016/j.tube.2010.02.003. Epub 2010 Mar 3.

Abstract

Mycobacterium tuberculosis (the causal agent of TB) has co-evolved with humans for centuries. It infects via the airborne route and is a prototypic highly adapted intracellular pathogen of macrophages. Extensive sequencing of the M. tuberculosis genome along with recent molecular phylogenetic studies is enabling us to gain insight into the biologic diversity that exists among bacterial strains that impact the pathogenesis of latent infection and disease. The majority of the M. tuberculosis cell envelope is comprised of carbohydrates and lipids, and there is increasing evidence that these microbial determinants that are readily exposed to the host immune system play critical roles in disease pathogenesis. Studies from our laboratory and others have raised the possibility that M. tuberculosis is adapting to the human host by cloaking its cell envelope molecules with terminal mannosylated (i.e. Man-alpha-(1-->2)-Man) oligosaccharides that resemble the glycoforms of mammalian mannoproteins. These mannosylated biomolecules engage the mannose receptor (MR) on macrophages during phagocytosis and dictate the intracellular fate of M. tuberculosis by regulating formation of the unique vesicular compartment in which the bacterium survives. The MR is highly expressed on alveolar macrophages (predominant C-type lectin on human cells) and functions as a scavenger receptor to maintain the healthiness of the lung by clearing foreign particles and at the same time regulating dangerous inflammatory responses. Thus M. tuberculosis exploits MR functions to gain entry into the macrophage and survive. Key biochemical pathways and mycobacterial determinants involved in the development and maintenance of the M. tuberculosis phagosome are being identified. The phylogenetic diversity observed in M. tuberculosis strains that impact its cell wall structure together with the genetic diversity observed in human populations, including those elements that affect macrophage function, may help to explain the extraordinary evolutionary adaptation of this pathogen to the human host. Major developments in these areas are the focus of this review.

摘要

结核分枝杆菌(结核病的病原体)与人类共同进化了数个世纪。它通过空气传播感染,是一种典型的高度适应细胞内病原体,感染巨噬细胞。对结核分枝杆菌基因组的广泛测序以及最近的分子系统发育研究使我们能够深入了解影响潜伏感染和疾病发病机制的细菌菌株的生物学多样性。结核分枝杆菌的大部分细胞包膜由碳水化合物和脂质组成,越来越多的证据表明,这些易于暴露于宿主免疫系统的微生物决定因素在疾病发病机制中起着关键作用。我们实验室和其他实验室的研究提出了这样一种可能性,即结核分枝杆菌通过用末端甘露糖化(即 Man-α-(1-->2)-Man)寡糖对其细胞包膜分子进行伪装来适应人类宿主,这些寡糖类似于哺乳动物甘露糖蛋白的糖型。这些甘露糖化生物分子在吞噬作用期间与巨噬细胞上的甘露糖受体 (MR) 结合,并通过调节细菌存活的独特囊泡隔室的形成来决定结核分枝杆菌的细胞内命运。MR 在肺泡巨噬细胞(人类细胞上的主要 C 型凝集素)上高度表达,作为一种清道夫受体发挥作用,通过清除外来颗粒来维持肺部的健康,同时调节危险的炎症反应。因此,结核分枝杆菌利用 MR 功能进入巨噬细胞并存活。正在确定参与结核分枝杆菌吞噬体发育和维持的关键生化途径和分枝杆菌决定因素。影响其细胞壁结构的结核分枝杆菌菌株的系统发育多样性以及包括影响巨噬细胞功能的那些元素在内的人类群体中的遗传多样性,可能有助于解释这种病原体对人类宿主的非凡进化适应。这些领域的主要进展是本文综述的重点。

相似文献

1
Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host.
Tuberculosis (Edinb). 2010 Mar;90(2):84-93. doi: 10.1016/j.tube.2010.02.003. Epub 2010 Mar 3.
6
The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to .
Front Immunol. 2018 Jun 12;9:1123. doi: 10.3389/fimmu.2018.01123. eCollection 2018.

引用本文的文献

3
Impact of Methylthioxylose Substituents on the Biological Activities of Lipomannan and Lipoarabinomannan in .
ACS Infect Dis. 2024 Apr 12;10(4):1379-1390. doi: 10.1021/acsinfecdis.4c00079. Epub 2024 Mar 21.
4
Selective Glycan Labeling of Mannose-Containing Glycolipids in Mycobacteria.
J Am Chem Soc. 2024 Jan 10;146(1):377-385. doi: 10.1021/jacs.3c09495. Epub 2023 Dec 19.
5
Drug-resistant strains of : cell envelope profiles and interactions with the host.
Front Cell Infect Microbiol. 2023 Oct 27;13:1274175. doi: 10.3389/fcimb.2023.1274175. eCollection 2023.
6
Role of succinyl substituents in the mannose-capping of lipoarabinomannan and control of inflammation in Mycobacterium tuberculosis infection.
PLoS Pathog. 2023 Sep 5;19(9):e1011636. doi: 10.1371/journal.ppat.1011636. eCollection 2023 Sep.
7
Virulence Factors of as Modulators of Cell Death Mechanisms.
Pathogens. 2023 Jun 18;12(6):839. doi: 10.3390/pathogens12060839.
8
Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria.
ACS Chem Biol. 2023 Mar 17;18(3):595-604. doi: 10.1021/acschembio.2c00912. Epub 2023 Mar 1.
9
Resistance and Susceptibility Immune Factors at Play during Infection of Macrophages.
Pathogens. 2022 Oct 6;11(10):1153. doi: 10.3390/pathogens11101153.
10
Phenotypic adaptation of to host-associated stressors that induce persister formation.
Front Cell Infect Microbiol. 2022 Sep 27;12:956607. doi: 10.3389/fcimb.2022.956607. eCollection 2022.

本文引用的文献

1
DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison.
Eur J Cell Biol. 2010 Jan;89(1):95-101. doi: 10.1016/j.ejcb.2009.10.004. Epub 2009 Nov 4.
2
Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis.
Adv Appl Microbiol. 2009;69:23-78. doi: 10.1016/S0065-2164(09)69002-X.
3
Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DC-SIGN.
Infect Immun. 2009 Oct;77(10):4538-47. doi: 10.1128/IAI.01256-08. Epub 2009 Aug 3.
4
Modeling the immune rheostat of macrophages in the lung in response to infection.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11246-51. doi: 10.1073/pnas.0904846106. Epub 2009 Jun 22.
6
N-Terminal clustering of the O-glycosylation sites in the Mycobacterium tuberculosis lipoprotein SodC.
Glycobiology. 2009 Jan;19(1):38-51. doi: 10.1093/glycob/cwn102. Epub 2008 Oct 8.
7
Polymethylated polysaccharides from Mycobacterium species revisited.
J Biol Chem. 2009 Jan 23;284(4):1949-53. doi: 10.1074/jbc.R800047200. Epub 2008 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验