Suppr超能文献

叠氮基肌醇探针可实现肌醇聚糖的代谢标记,并揭示分枝杆菌中的肌醇转运蛋白。

Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria.

机构信息

Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523 United States.

Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859 United States.

出版信息

ACS Chem Biol. 2023 Mar 17;18(3):595-604. doi: 10.1021/acschembio.2c00912. Epub 2023 Mar 1.

Abstract

Bacteria from the genus include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in . We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.

摘要

包括引起人类严重疾病的病原体在内的 属细菌仍然是难以治疗的感染性病原体。这些挑战的核心是分枝杆菌细胞包膜的组成和组织,其中包括独特而复杂的聚糖。由于其存在于免疫调节细胞包膜糖脂(如磷脂酰肌醇甘露糖(PIM)和 PIM 锚定的脂甘露聚糖(LM)和脂阿拉伯甘露聚糖(LAM)的结构核心中,肌醇是分枝杆菌必需的代谢物。尽管它们对分枝杆菌的生理和发病机制很重要,但 PIM、LM 和 LAM 的结构和动态的许多方面仍然知之甚少。最近,开发了允许代谢标记和检测特定分枝杆菌聚糖的探针,以研究细胞包膜的组装和动态。然而,这些工具仅限于肽聚糖、阿拉伯半乳聚糖和含有类脂酸的糖脂。在此,我们报告了合成叠氮肌醇(InoAz)类似物作为探针的开发,该探针可代谢标记完整分枝杆菌中的 PIMs、LM 和 LAM。此外,我们利用 InoAz 探针在 中发现了一种肌醇转运体和分解代谢途径。我们预计,在未来,InoAz 探针与生物正交化学相结合,将为研究不同分枝杆菌生物体内 PIM、LM 和 LAM 的生物合成、运输和动态提供一种有价值的工具。

相似文献

1
Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria.
ACS Chem Biol. 2023 Mar 17;18(3):595-604. doi: 10.1021/acschembio.2c00912. Epub 2023 Mar 1.
3
Selective Glycan Labeling of Mannose-Containing Glycolipids in Mycobacteria.
J Am Chem Soc. 2024 Jan 10;146(1):377-385. doi: 10.1021/jacs.3c09495. Epub 2023 Dec 19.
6
Inositol lipid metabolism in mycobacteria: biosynthesis and regulatory mechanisms.
Biochim Biophys Acta. 2011 Jun;1810(6):630-41. doi: 10.1016/j.bbagen.2011.03.017. Epub 2011 Apr 5.
7
Function of phosphatidylinositol in mycobacteria.
J Biol Chem. 2005 Mar 25;280(12):10981-7. doi: 10.1074/jbc.M413443200. Epub 2005 Jan 5.
10
Inositol acylation of phosphatidylinositol mannosides: a rapid mass response to membrane fluidization in mycobacteria.
J Lipid Res. 2022 Sep;63(9):100262. doi: 10.1016/j.jlr.2022.100262. Epub 2022 Aug 8.

引用本文的文献

1
Exploiting thioether reactivity to label mycobacterial glycans.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2422185122. doi: 10.1073/pnas.2422185122. Epub 2025 May 5.
2
Chemical biology tools to probe bacterial glycans.
Curr Opin Chem Biol. 2024 Jun;80:102453. doi: 10.1016/j.cbpa.2024.102453. Epub 2024 Apr 5.
3
Selective Glycan Labeling of Mannose-Containing Glycolipids in Mycobacteria.
J Am Chem Soc. 2024 Jan 10;146(1):377-385. doi: 10.1021/jacs.3c09495. Epub 2023 Dec 19.
4
Chemical approaches to unraveling the biology of mycobacteria.
Cell Chem Biol. 2023 May 18;30(5):420-435. doi: 10.1016/j.chembiol.2023.04.014.

本文引用的文献

1
A Far-Red Molecular Rotor Fluorogenic Trehalose Probe for Live Mycobacteria Detection and Drug-Susceptibility Testing.
Angew Chem Int Ed Engl. 2023 Jan 9;62(2):e202213563. doi: 10.1002/anie.202213563. Epub 2022 Dec 7.
2
A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria.
ACS Infect Dis. 2022 Nov 11;8(11):2223-2231. doi: 10.1021/acsinfecdis.2c00396. Epub 2022 Oct 26.
3
PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis.
Sci Rep. 2022 Feb 8;12(1):2097. doi: 10.1038/s41598-022-06109-7.
4
Chemical Reporters for Bacterial Glycans: Development and Applications.
Chem Rev. 2022 Feb 9;122(3):3336-3413. doi: 10.1021/acs.chemrev.1c00729. Epub 2021 Dec 14.
5
Biosynthetic Glycan Labeling.
J Am Chem Soc. 2021 Oct 13;143(40):16337-16342. doi: 10.1021/jacs.1c07430. Epub 2021 Oct 4.
6
Metabolic Labeling of Live Mycobacteria with Trehalose-Based Probes.
Methods Mol Biol. 2021;2314:385-398. doi: 10.1007/978-1-0716-1460-0_18.
7
Chemical probes for tagging mycobacterial lipids.
Curr Opin Chem Biol. 2021 Dec;65:57-65. doi: 10.1016/j.cbpa.2021.05.009. Epub 2021 Jun 30.
8
Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope.
Chem Rev. 2021 May 12;121(9):5124-5157. doi: 10.1021/acs.chemrev.0c00869. Epub 2020 Nov 10.
9
Polysaccharide Succinylation Enhances the Intracellular Survival of .
ACS Infect Dis. 2020 Aug 14;6(8):2235-2248. doi: 10.1021/acsinfecdis.0c00361. Epub 2020 Jul 27.
10
Photoactivatable Glycolipid Probes for Identifying Mycolate-Protein Interactions in Live Mycobacteria.
J Am Chem Soc. 2020 Apr 29;142(17):7725-7731. doi: 10.1021/jacs.0c01065. Epub 2020 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验