Suppr超能文献

磁共振渗透弹性成像:一种估计饱和流体软组织力学特性的算法。

Magnetic resonance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated soft tissues.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

出版信息

IEEE Trans Med Imaging. 2010 Mar;29(3):746-55. doi: 10.1109/TMI.2009.2035309.

Abstract

Magnetic resonance poroelastography (MRPE) is introduced as an alternative to single-phase model-based elastographic reconstruction methods. A 3-D finite element poroelastic inversion algorithm was developed to recover the mechanical properties of fluid-saturated tissues. The performance of this algorithm was assessed through a variety of numerical experiments, using synthetic data to probe its stability and sensitivity to the relevant model parameters. Preliminary results suggest the algorithm is robust in the presence of noise and capable of producing accurate assessments of the underlying mechanical properties in simulated phantoms. Furthermore, a 3-D time-harmonic motion field was recorded for a poroelastic phantom containing a single cylindrical inclusion and used to assess the feasibility of MRPE image reconstruction from experimental data. The elastograms obtained from the proposed poroelastic algorithm demonstrate significant improvement over linearly elastic MRE images generated using the same data. In addition, MRPE offers the opportunity to estimate the time-harmonic pressure field resulting from tissue excitation, highlighting the potential for its application in the diagnosis and monitoring of disease processes associated with changes in interstitial pressure.

摘要

磁共振渗透弹性成像(MRPE)作为单相基于模型的弹性重建方法的替代方法被引入。开发了一种三维有限元渗透弹性反演算法来恢复饱和组织的力学特性。通过各种数值实验评估了该算法的性能,使用合成数据来探测其对相关模型参数的稳定性和敏感性。初步结果表明,该算法在存在噪声的情况下具有稳健性,并能够在模拟的体模中准确评估潜在的力学特性。此外,记录了包含单个圆柱形内含物的渗透弹性体模的三维时谐运动场,并用于评估从实验数据进行 MRPE 图像重建的可行性。与使用相同数据生成的线性弹性 MRE 图像相比,从所提出的渗透弹性算法获得的弹性图像显示出显著的改善。此外,MRPE 提供了从组织激励产生的时谐压力场进行估计的机会,突出了其在与间质压力变化相关的疾病过程的诊断和监测中的应用潜力。

相似文献

2
Contrast detection in fluid-saturated media with magnetic resonance poroelastography.
Med Phys. 2010 Jul;37(7):3518-26. doi: 10.1118/1.3443563.
3
Modeling of soft poroelastic tissue in time-harmonic MR elastography.
IEEE Trans Biomed Eng. 2009 Mar;56(3):598-608. doi: 10.1109/TBME.2008.2009928. Epub 2008 Dec 2.
4
A numerical framework for interstitial fluid pressure imaging in poroelastic MRE.
PLoS One. 2017 Jun 6;12(6):e0178521. doi: 10.1371/journal.pone.0178521. eCollection 2017.
5
Poroelastography: imaging the poroelastic properties of tissues.
Ultrasound Med Biol. 2001 Oct;27(10):1387-97. doi: 10.1016/s0301-5629(01)00433-1.
6
Shear modulus decomposition algorithm in magnetic resonance elastography.
IEEE Trans Med Imaging. 2009 Oct;28(10):1526-33. doi: 10.1109/TMI.2009.2019823.
7
Spatially-resolved hydraulic conductivity estimation via poroelastic magnetic resonance elastography.
IEEE Trans Med Imaging. 2014 Jun;33(6):1373-80. doi: 10.1109/TMI.2014.2311456. Epub 2014 Mar 18.
8
Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.
Phys Med Biol. 2010 Nov 21;55(22):6801-15. doi: 10.1088/0031-9155/55/22/013. Epub 2010 Oct 28.
9
Performance analysis of a new real-time elastographic time constant estimator.
IEEE Trans Med Imaging. 2011 Feb;30(2):497-511. doi: 10.1109/TMI.2010.2087344. Epub 2010 Oct 14.
10
Optimization of a Pixel-to-Pixel Curve-Fitting Method for Poroelastography Imaging.
Ultrasound Med Biol. 2017 Jan;43(1):309-322. doi: 10.1016/j.ultrasmedbio.2016.09.005. Epub 2016 Oct 17.

引用本文的文献

3
Estimating the viscoelastic properties of the human brain at 7 T MRI using intrinsic MRE and nonlinear inversion.
Hum Brain Mapp. 2023 Dec 15;44(18):6575-6591. doi: 10.1002/hbm.26524. Epub 2023 Nov 1.
5
Lorentz force induced shear waves for magnetic resonance elastography applications.
Sci Rep. 2021 Jun 17;11(1):12785. doi: 10.1038/s41598-021-91895-9.
6
Nonlinear Inversion MR Elastography With Low-Frequency Actuation.
IEEE Trans Med Imaging. 2020 May;39(5):1775-1784. doi: 10.1109/TMI.2019.2958212. Epub 2019 Dec 6.
7
Elastographic Tomosynthesis From X-Ray Strain Imaging of Breast Cancer.
IEEE J Transl Eng Health Med. 2019 Aug 19;7:4300312. doi: 10.1109/JTEHM.2019.2935721. eCollection 2019.
9
MR elastography at 1 Hz of gelatin phantoms using 3D or 4D acquisition.
J Magn Reson. 2018 Nov;296:112-120. doi: 10.1016/j.jmr.2018.08.012. Epub 2018 Aug 31.
10
Stiffness reconstruction methods for MR elastography.
NMR Biomed. 2018 Oct;31(10):e3935. doi: 10.1002/nbm.3935. Epub 2018 May 18.

本文引用的文献

1
Modeling of soft poroelastic tissue in time-harmonic MR elastography.
IEEE Trans Biomed Eng. 2009 Mar;56(3):598-608. doi: 10.1109/TBME.2008.2009928. Epub 2008 Dec 2.
2
Assessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastography.
J Biomech. 2008 Oct 20;41(14):2954-9. doi: 10.1016/j.jbiomech.2008.07.034. Epub 2008 Sep 20.
3
Assessment of liver viscoelasticity using multifrequency MR elastography.
Magn Reson Med. 2008 Aug;60(2):373-9. doi: 10.1002/mrm.21636.
4
In vivo brain viscoelastic properties measured by magnetic resonance elastography.
NMR Biomed. 2008 Aug;21(7):755-64. doi: 10.1002/nbm.1254.
6
8
Freehand ultrasound elastography with a 3-D probe.
Ultrasound Med Biol. 2008 Mar;34(3):463-74. doi: 10.1016/j.ultrasmedbio.2007.08.014. Epub 2007 Nov 12.
10
The feasibility of using poroelastographic techniques for distinguishing between normal and lymphedematous tissues in vivo.
Phys Med Biol. 2007 Nov 7;52(21):6525-41. doi: 10.1088/0031-9155/52/21/013. Epub 2007 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验