Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5272-5. doi: 10.1073/pnas.1000655107. Epub 2010 Mar 3.
The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism remains in debate. By imaging phase domains with electron microscopy and interrogating individual domains in situ via electron transport spectroscopy in double-layered Sr(3)(Ru(1-x)Mn(x))(2)O(7) (x = 0 and 0.2), we show in real-space that the microscopic phase competition and the Mott-type metal-insulator transition are extremely sensitive to applied mechanical stress. The revealed dynamic phase evolution with applied stress provides the first direct evidence for the important role of strain effect in both phase separation and Mott metal-insulator transition due to strong electron-lattice coupling in correlated systems.
电子和晶格自由度之间的复杂相互作用在关联电子材料中产生了多个近简并的电子态。这些简并电子态之间的竞争在很大程度上决定了系统的功能,但所涉及的机制仍存在争议。通过电子显微镜对相畴成像,并通过双层 Sr(3)(Ru(1-x)Mn(x))(2)O(7)(x = 0 和 0.2)中的电子输运光谱原位探测各个畴,我们在实空间中表明,微观相竞争和莫特型金属-绝缘体转变对施加的机械应力极为敏感。所揭示的与施加的应力相关的动态相演化为应变效应对相关体系中的相分离和莫特金属-绝缘体转变的重要作用提供了第一个直接证据,这归因于电子-晶格的强耦合。