Mundet Bernat, Domínguez Claribel, Fowlie Jennifer, Gibert Marta, Triscone Jean-Marc, Alexander Duncan T L
Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland.
Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Nano Lett. 2021 Mar 24;21(6):2436-2443. doi: 10.1021/acs.nanolett.0c04538. Epub 2021 Mar 8.
Nanoscale mapping of the distinct electronic phases characterizing the metal-insulator transition displayed by most of the rare-earth nickelate compounds is fundamental for discovering the true nature of this transition and the possible couplings that are established at the interfaces of nickelate-based heterostructures. Here, we demonstrate that this can be accomplished by using scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. By tracking how the O and Ni edge fine structures evolve across two different NdNiO/SmNiO superlattices, displaying either one or two metal-insulator transitions depending on the individual layer thickness, we are able to determine the electronic state of each of the individual constituent materials. We further map the spatial configuration associated with their metallic/insulating regions, reaching unit cell spatial resolution. With this, we estimate the width of the metallic/insulating boundaries at the NdNiO/SmNiO interfaces, which is measured to be on the order of four unit cells.
对大多数稀土镍酸盐化合物所呈现的金属-绝缘体转变的不同电子相进行纳米级映射,对于揭示这种转变的真正本质以及在镍酸盐基异质结构界面处可能形成的耦合至关重要。在这里,我们证明可以通过结合扫描透射电子显微镜和电子能量损失谱来实现这一点。通过跟踪O和Ni边缘精细结构如何在两种不同的NdNiO/SmNiO超晶格中演变,这两种超晶格根据各层厚度显示出一个或两个金属-绝缘体转变,我们能够确定每种组成材料的电子状态。我们进一步绘制了与其金属/绝缘区域相关的空间构型,达到了晶胞空间分辨率。据此,我们估计了NdNiO/SmNiO界面处金属/绝缘边界的宽度,测量结果约为四个晶胞。