Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
Nano Lett. 2010 Apr 14;10(4):1137-43. doi: 10.1021/nl903141j.
There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides. From a living algal cell, Chlamydomonas reinhardtii, photosynthetic electrons (1.2 pA at 6000 mA/m(2)) were directly extracted without a mediator electron carrier by inserting a nanoelectrode into the algal chloroplast and applying an overvoltage. This result may represent an initial step in generating "high efficiency" bioelectricity by directly harvesting high energy photosynthetic electrons.
有许多生物能源来源于光合作用过程,例如脂类、醇类、氢气和多糖。然而,通常只有一小部分被光合生物吸收的太阳能被转化为可被利用的能量形式。为了更有效地利用光合作用生物收集的太阳能,我们评估了通过在将 CO2 固定成糖和多糖之前,直接从光合电子传递链中提取电子来产生生物电能的可行性。从活的藻类细胞莱茵衣藻中,通过将纳米电极插入藻类叶绿体并施加过电压,在没有介体电子载体的情况下,直接提取了光合作用电子(在 6000 mA/m(2)时为 1.2 pA)。这一结果可能代表了通过直接采集高能光合作用电子来产生“高效”生物电能的初始步骤。