Schuergers N, Werlang C, Ajo-Franklin C M, Boghossian A A
Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Energy Environ Sci. 2017 May 1;10(5):1102-1115. doi: 10.1039/C7EE00282C. Epub 2017 Apr 4.
The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane-electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and the past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport capabilities. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6-10% without accounting for additional bioengineering optimizations for light-harvesting.
将活细胞与电子接受支架进行电子连接的能力对于下一代生物光伏技术的发展至关重要。尽管最近的研究集中在设计能够最大化细胞与支架之间电子通信的合成界面,但此类装置的效率受到细胞膜低电导率的限制。本综述从材料科学的角度探讨了应用互补的合成生物学方法来设计膜 - 电极界面。它聚焦于在细菌宿主细胞中引入外源细胞外电子转移途径背后的技术挑战,以及过去和未来为了生物光伏应用而对具有人工电子输出能力的光合生物进行工程改造所做的努力。在回顾使用未修饰和经过生物工程改造且具有改善电子传输能力的光合细菌的最新生物光伏技术之前,本文重点介绍了在模式宿主生物大肠杆菌中设计基于蛋白质的电子输出通道方面的进展。通过热力学分析提出了工程化蓝细菌细胞外电子传输的能量可行途径,并确定了适合蛋白质工程技术的代谢瓶颈。基于此分析,在不考虑用于光捕获的额外生物工程优化的情况下,表达外源基于蛋白质的电子通道的工程化光合生物理论上可实现的最大太阳能转换效率为6 - 10%。