Suppr超能文献

浓度梯度静态光散射法研究无锌胰岛素的 pH 值依赖性自缔合。

pH-dependent self-association of zinc-free insulin characterized by concentration-gradient static light scattering.

机构信息

National Institute of Diabetes and Digestive and Kidney diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA.

出版信息

Biophys Chem. 2010 May;148(1-3):28-33. doi: 10.1016/j.bpc.2010.02.002. Epub 2010 Feb 8.

Abstract

Insulin self-association at pH 1.85, 1.95, 3.0, 7.2, 8.0 and 10 was studied via composition gradient light scattering (CG-SLS). At pH 1.95 in acetic acid, insulin was found to exist as a monomer, and in pH 1.85 HCl as a dimer. At pH values of 3.0-8.0, the dependence of scattering intensity upon total insulin concentration at concentrations of up to 1.5mg/mL may be quantitatively accounted for by a simple isodesmic association equilibrium scheme requiring only a single association constant for addition of monomer to monomer or any oligomer. At pH 10, the association constant for addition of monomer to monomer was found to be smaller than the association constant for addition of monomer to all higher oligomers by a factor of approximately five. The isodesmic association scheme was also found to quantitatively account for the concentration dependence of the weight-average molecular weight derived from previously published sedimentation equilibrium measurements made at pH 7.0, and the best-fit value of the stepwise equilibrium constant obtained therefrom was in excellent agreement with that obtained from analysis of the light scattering data obtained at pH 7.2.

摘要

在 pH 值为 1.85、1.95、3.0、7.2、8.0 和 10 时,通过组成梯度光散射 (CG-SLS) 研究了胰岛素的自缔合。在 pH 值为 1.95 的乙酸中,胰岛素被发现以单体形式存在,而在 pH 值为 1.85 的 HCl 中以二聚体形式存在。在 pH 值为 3.0-8.0 时,在高达 1.5mg/mL 的浓度范围内,散射强度对总胰岛素浓度的依赖性可以通过简单的等摩尔缔合平衡方案进行定量解释,该方案仅需要一个单体与单体或任何低聚物的单体的单一缔合常数。在 pH 值为 10 时,发现单体与单体的加成的缔合常数比单体与所有更高低聚物的加成的缔合常数小约五倍。还发现,等摩尔缔合方案可以定量解释从先前在 pH 值为 7.0 时进行的沉降平衡测量中得出的重均分子量的浓度依赖性,并且从该处获得的逐步平衡常数的最佳拟合值与从在 pH 值为 7.2 时获得的光散射数据的分析获得的平衡常数非常吻合。

相似文献

1
pH-dependent self-association of zinc-free insulin characterized by concentration-gradient static light scattering.
Biophys Chem. 2010 May;148(1-3):28-33. doi: 10.1016/j.bpc.2010.02.002. Epub 2010 Feb 8.
2
Self-association of Zn-insulin at neutral pH: investigation by concentration gradient--static and dynamic light scattering.
Biophys Chem. 2010 May;148(1-3):23-7. doi: 10.1016/j.bpc.2010.02.001. Epub 2010 Feb 10.
4
Light scattering coupled with reversed phase chromatography to study protein self-association under separating conditions.
J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Nov 1;938:60-4. doi: 10.1016/j.jchromb.2013.08.031. Epub 2013 Aug 30.
6
9
Rapid quantitative characterization of protein interactions by composition gradient static light scattering.
Biophys J. 2006 Mar 15;90(6):2164-9. doi: 10.1529/biophysj.105.074310. Epub 2005 Dec 30.
10
Polymerization pattern of insulin at pH 7.0.
Biochemistry. 1976 Oct 19;15(21):4660-5. doi: 10.1021/bi00666a018.

引用本文的文献

1
Multivalent Protein-Nucleic Acid Interactions Probed by Composition-Gradient Multiangle Light Scattering.
ACS Omega. 2024 Sep 21;9(39):41003-41010. doi: 10.1021/acsomega.4c06358. eCollection 2024 Oct 1.
2
Protein nanocondensates: the next frontier.
Biophys Rev. 2023 Aug 9;15(4):515-530. doi: 10.1007/s12551-023-01105-1. eCollection 2023 Aug.
4
Formation of Protamine and Zn-Insulin Assembly: Exploring Biophysical Consequences.
ACS Omega. 2022 Nov 4;7(45):41044-41057. doi: 10.1021/acsomega.2c04419. eCollection 2022 Nov 15.
6
The Possible Role of the Type I Chaperonins in Human Insulin Self-Association.
Life (Basel). 2022 Mar 18;12(3):448. doi: 10.3390/life12030448.
7
Hydroxytyrosol Inhibits Protein Oligomerization and Amyloid Aggregation in Human Insulin.
Int J Mol Sci. 2020 Jun 30;21(13):4636. doi: 10.3390/ijms21134636.
9
Revealing the Dynamical Role of Co-solvents in the Coupled Folding and Dimerization of Insulin.
J Phys Chem Lett. 2020 Jun 4;11(11):4353-4358. doi: 10.1021/acs.jpclett.0c00982. Epub 2020 May 19.
10
Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues.
Adv Ther (Weinh). 2020 Jan;3(1). doi: 10.1002/adtp.201900094. Epub 2019 Dec 17.

本文引用的文献

1
The specific refractive increment of some purified proteins.
J Am Chem Soc. 1948 Aug;70(8):2719-24. doi: 10.1021/ja01188a027.
2
Direct insight into insulin aggregation by 2D NMR complemented by PFGSE NMR.
Proteins. 2008 May 15;71(3):1057-65. doi: 10.1002/prot.21969.
3
Insulin association in neutral solutions studied by light scattering.
Biophys Chem. 1991 Feb;39(2):205-13. doi: 10.1016/0301-4622(91)85023-j.
4
Analytical ultracentrifugation for the study of protein association and assembly.
Curr Opin Chem Biol. 2006 Oct;10(5):430-6. doi: 10.1016/j.cbpa.2006.08.017. Epub 2006 Aug 28.
5
Rapid quantitative characterization of protein interactions by composition gradient static light scattering.
Biophys J. 2006 Mar 15;90(6):2164-9. doi: 10.1529/biophysj.105.074310. Epub 2005 Dec 30.
7
Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
Biometals. 2005 Aug;18(4):295-303. doi: 10.1007/s10534-005-3685-y.
9
Prediction of the association state of insulin using spectral parameters.
J Pharm Sci. 2003 Apr;92(4):847-58. doi: 10.1002/jps.10355.
10
Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.
J Mol Biol. 2002 Apr 26;318(2):479-90. doi: 10.1016/S0022-2836(02)00021-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验