Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
J Neurosci. 2010 Mar 3;30(9):3508-17. doi: 10.1523/JNEUROSCI.5386-09.2010.
Actin-rich dendritic spines are the locus of excitatory synaptic transmission and plastic events such as long-term potentiation (LTP). Morphological plasticity of spines accompanies activity-dependent changes in synaptic strength. Several Rho GTPase family members are implicated in regulating neuronal and, in particular, spine structure via actin and the actin-binding protein cofilin. However, despite expression in hippocampus and cortex, its ability to modulate actin-regulatory proteins, and its induction during aging, RhoB has been relatively neglected. We previously demonstrated that LTP is associated with specific RhoB activation. Here, we further examined its role in synaptic function using mice with genetic deletion of the RhoB GTPase (RhoB(-/-) mice). Normal basal synaptic transmission accompanied reduced paired-pulse facilitation and post-tetanic potentiation in the hippocampus of RhoB(-/-) mice. Early phase LTP was significantly reduced in RhoB(-/-) animals, whereas the later phase was unaffected. In wild-type mice (RhoB(+/+)), Western blot analysis of potentiated hippocampus showed significant increases in phosphorylated cofilin relative to nonpotentiated slices, which were dramatically impaired in RhoB(-/-) slices. There was also a deficit in phosphorylated Lim kinase levels in the hippocampus from RhoB(-/-) mice. Morphological analysis suggested that lack of RhoB resulted in increased dendritic branching and decreased spine number. Furthermore, an increase in the proportion of stubby relative to thin spines was observed. Moreover, spines demonstrated increased length along with increased head and neck widths. These data implicate RhoB in cofilin regulation and dendritic and spine morphology, highlighting its importance in synaptic plasticity at a structural and functional level.
富含肌动蛋白的树突棘是兴奋性突触传递和长时程增强(LTP)等可塑性事件的发生部位。棘突的形态可塑性伴随着突触强度的活性依赖性变化。几种 Rho GTPase 家族成员被认为通过肌动蛋白和肌动蛋白结合蛋白丝切蛋白来调节神经元,特别是棘突结构。然而,尽管 RhoB 在海马体和皮层中有表达,并且能够调节肌动蛋白调节蛋白,但在衰老过程中其诱导表达,RhoB 仍然相对被忽视。我们之前证明 LTP 与特定的 RhoB 激活有关。在这里,我们使用基因敲除 RhoB GTPase 的小鼠(RhoB(-/-) 小鼠)进一步研究了其在突触功能中的作用。RhoB(-/-) 小鼠的海马体中,正常的基础突触传递伴随着成对脉冲易化和强直后增强的减少。RhoB(-/-) 动物的早期 LTP 显著减少,而晚期 LTP 不受影响。在野生型小鼠(RhoB(+/+))中,增强后的海马体的 Western blot 分析显示,磷酸化丝切蛋白相对于未增强的切片有显著增加,而 RhoB(-/-) 切片中的磷酸化丝切蛋白则明显受损。RhoB(-/-) 小鼠海马体中磷酸化 Lim 激酶水平也存在缺陷。形态学分析表明,缺乏 RhoB 导致树突分支增加和棘突数量减少。此外,还观察到短而粗的棘突比例增加。此外,棘突的长度增加,同时头部和颈部的宽度也增加。这些数据表明 RhoB 参与丝切蛋白的调节以及树突和棘突的形态,突出了其在结构和功能水平上对突触可塑性的重要性。