Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
Current address: Universidad de Málaga, Málaga, Spain.
Cell Mol Life Sci. 2024 Aug 19;81(1):358. doi: 10.1007/s00018-024-05394-x.
Long-term synaptic plasticity is typically associated with morphological changes in synaptic connections. However, the molecular mechanisms coupling functional and structural aspects of synaptic plasticity are still poorly defined. The catalytic activity of type I phosphoinositide-3-kinase (PI3K) is required for specific forms of synaptic plasticity, such as NMDA receptor-dependent long-term potentiation (LTP) and mGluR-dependent long-term depression (LTD). On the other hand, PI3K signaling has been linked to neuronal growth and synapse formation. Consequently, PI3Ks are promising candidates to coordinate changes in synaptic strength with structural remodeling of synapses. To investigate this issue, we targeted individual regulatory subunits of type I PI3Ks in hippocampal neurons and employed a combination of electrophysiological, biochemical and imaging techniques to assess their role in synaptic plasticity. We found that a particular regulatory isoform, p85α, is selectively required for LTP. This specificity is based on its BH domain, which engages the small GTPases Rac1 and Cdc42, critical regulators of the actin cytoskeleton. Moreover, cofilin, a key regulator of actin dynamics that accumulates in dendritic spines after LTP induction, failed to do so in the absence of p85α or when its BH domain was overexpressed as a dominant negative construct. Finally, in agreement with this convergence on actin regulatory mechanisms, the presence of p85α in the PI3K complex determined the extent of actin polymerization in dendritic spines during LTP. Therefore, this study reveals a molecular mechanism linking structural and functional synaptic plasticity through the coordinate action of PI3K catalytic activity and a specific isoform of the regulatory subunits.
长期突触可塑性通常与突触连接的形态变化有关。然而,将功能和结构方面的突触可塑性联系起来的分子机制仍未得到很好的定义。I 型磷酸肌醇 3-激酶 (PI3K) 的催化活性是特定形式的突触可塑性所必需的,例如 NMDA 受体依赖性长时程增强 (LTP) 和 mGluR 依赖性长时程抑制 (LTD)。另一方面,PI3K 信号与神经元生长和突触形成有关。因此,PI3Ks 是协调突触强度变化与突触结构重塑的有希望的候选者。为了研究这个问题,我们在海马神经元中靶向 I 型 PI3K 的单个调节亚基,并结合使用电生理学、生物化学和成像技术来评估它们在突触可塑性中的作用。我们发现,特定的调节同工型 p85α 是 LTP 所必需的。这种特异性基于其 BH 结构域,该结构域与小 GTPases Rac1 和 Cdc42 结合,后者是肌动蛋白细胞骨架的关键调节因子。此外,肌动蛋白动力学的关键调节剂 cofilin 在 LTP 诱导后在树突棘中积累,但在缺乏 p85α 或当其 BH 结构域作为显性负构象过度表达时,它未能做到这一点。最后,与这种对肌动蛋白调节机制的收敛一致的是,PI3K 复合物中 p85α 的存在决定了 LTP 期间树突棘中肌动蛋白聚合的程度。因此,这项研究揭示了一种分子机制,通过 PI3K 催化活性和调节亚基的特定同工型的协调作用将结构和功能突触可塑性联系起来。