Suppr超能文献

真菌聚酮化合物生物合成基因的功能分析。

Functional analysis of fungal polyketide biosynthesis genes.

机构信息

Laboratory of Natural Products Chemistry, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, Japan.

出版信息

J Antibiot (Tokyo). 2010 May;63(5):207-18. doi: 10.1038/ja.2010.17. Epub 2010 Mar 5.

Abstract

Fungal polyketides have huge structural diversity from simple aromatics to highly modified complex reduced-type compounds. Despite such diversty, single modular iterative type I polyketide synthases (iPKSs) are responsible for their carbon skeleton construction. Using heterologous expression systems, we have studied on ATX, a 6-methylsalicylic acid synthase from Aspergillus terreus as a model iPKS. In addition, iPKS functions involved in fungal spore pigment biosynthesis were analyzed together with polyketide-shortening enzymes that convert products of PKSs to shorter ketides by hydrolytic C-C bond cleavage. In our studies on reducing-type iPKSs, we cloned and expressed PKS genes, pksN, pksF, pksK and sol1 from Alternaria solani. The sol gene cluster was found to be involved in solanapyrone biosynthesis and sol5 was identified to encode solanapyrone synthase, a Diels-Alder enzyme. Our fungal PKS studies were further extended to identify the function of PKS-nonribosomal peptide synthase involved in cyclopiazonic acid biosynthesis.

摘要

真菌聚酮化合物具有巨大的结构多样性,从简单的芳烃到高度修饰的复杂还原型化合物。尽管存在这种多样性,但单一模块化的 I 型聚酮合酶 (iPKSs) 负责其碳骨架的构建。我们使用异源表达系统,以 Aspergillus terreus 的 6-甲基水杨酸合酶 ATX 作为模型 iPKS 进行了研究。此外,还分析了与真菌孢子色素生物合成相关的 iPKS 功能,以及聚酮缩短酶,这些酶通过水解 C-C 键断裂将 PKSs 的产物转化为较短的酮。在我们对还原型 iPKSs 的研究中,我们克隆并表达了来自 Alternaria solani 的 PKS 基因 pksN、pksF、pksK 和 sol1。发现 sol 基因簇参与了 solanapyrone 生物合成,并且 sol5 被鉴定为编码 solanapyrone 合酶,一种 Diels-Alder 酶。我们的真菌 PKS 研究进一步扩展到鉴定参与环匹阿尼酸生物合成的 PKS-非核糖体肽合酶的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验