Alben J O, Bare G H
Appl Opt. 1978 Sep 15;17(18):2985-90. doi: 10.1364/AO.17.002985.
Infrared absorption spectra of the alpha-104 (G11) cysteine SH group have been observed for aqueous solutions of hemoglobin derivatives from humans, pigs, and horses. The center frequencies ((nu)SH) show ligand sensitive patterns that are similar for the three species, with (nu)SH (HbCO) <(nu)SH (HbO(2) ~ HbCN) < (nu)SH (Hb(+)) <<(nu)SH (deoxyHb) for human and pig hemoglobins. The alpha-104 SH group is most strongly H-bonded (smallest (nu)SH), has the greatest range of (nu)SH (Hb ? HbCO) in human hemoglobin, and is least strongly H-bonded and has the smallest range of (nu)SH (Hb ? HbCO) in horse hemoglobin. The beta-112 cysteine SH in human hemoglobin is more weakly H-bonded than is the alpha-104 SH. These studies illustrate how FTIR can be used to measure differences in protein structure that are related to biological control mechanisms.
已观察到来自人类、猪和马的血红蛋白衍生物水溶液中α-104(G11)半胱氨酸巯基的红外吸收光谱。中心频率(νSH)显示出对配体敏感的模式,这三种物种的模式相似,对于人类和猪血红蛋白,νSH(HbCO)<νSH(HbO₂~HbCN)<νSH(Hb⁺)<<νSH(脱氧血红蛋白)。α-104巯基的氢键作用最强(νSH最小),在人类血红蛋白中νSH(Hb→HbCO)的变化范围最大,而在马血红蛋白中氢键作用最弱且νSH(Hb→HbCO)的变化范围最小。人类血红蛋白中的β-112半胱氨酸巯基的氢键作用比α-104巯基弱。这些研究说明了傅里叶变换红外光谱(FTIR)如何用于测量与生物控制机制相关的蛋白质结构差异。