凹微井阵列中可控大小的类胚体形成。

Controlled-size embryoid body formation in concave microwell arrays.

机构信息

Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea.

出版信息

Biomaterials. 2010 May;31(15):4296-303. doi: 10.1016/j.biomaterials.2010.01.115. Epub 2010 Mar 5.

Abstract

Embryonic stem (ES) cells hold great potential as a renewable cell source for regenerative medicine and cell-based therapy. Despite the potential of ES cells, conventional stem cell culture methods do not enable the control of the microenvironment. A number of microscale engineering approaches have been recently developed to control the extracellular microenvironment and to direct embryonic stem cell fate. Here, we used engineered concave microwell arrays to regulate the size and shape of embryoid bodies (EBs)-cell aggregate intermediates derived from ES cells. Murine ES cells were aggregated within concave microwells, and their aggregate sizes were controlled by varying the microwell widths (200, 500, and 1000 mum). Differentiation of murine ES cells into three germ layers was assessed by analyzing gene expression. We found that ES cell-derived cardiogenesis and neurogenesis were strongly regulated by the EB size, showing that larger concave microwell arrays induced more neuronal and cardiomyocyte differentiation than did smaller microwell arrays. Therefore, this engineered concave microwell array could be a potentially useful tool for controlling ES cell behavior.

摘要

胚胎干细胞 (ES) 作为可再生的细胞来源,在再生医学和基于细胞的治疗中有巨大的应用潜力。尽管 ES 细胞具有巨大的潜力,但传统的干细胞培养方法无法控制其微环境。最近已经开发出许多微尺度工程方法来控制细胞外微环境,从而引导胚胎干细胞的命运。在这里,我们使用了工程化的凹微井阵列来调节胚状体 (EB)——从 ES 细胞中衍生出的细胞聚集体中间产物的大小和形状。将鼠 ES 细胞聚集在凹微井中,并通过改变微井的宽度(200、500 和 1000 µm)来控制其聚集体的大小。通过分析基因表达来评估鼠 ES 细胞向三个胚层的分化情况。我们发现,EB 大小强烈调节 ES 细胞向心肌和神经的分化,表明较大的凹微井阵列比较小的微井阵列诱导更多的神经元和心肌细胞分化。因此,这种工程化的凹微井阵列可能是控制 ES 细胞行为的一种有潜力的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索