Suppr超能文献

进行性青光眼的神经视网膜边缘面积和视网膜神经纤维层厚度变化率比较。

A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma.

机构信息

Hamilton Glaucoma Center, Department of Ophthalmology, University of California San Diego, La Jolla, California, USA.

出版信息

Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3531-9. doi: 10.1167/iovs.09-4350. Epub 2010 Mar 5.

Abstract

PURPOSE. To evaluate and compare rates of change in neuroretinal rim area (RA) and retinal nerve fiber layer thickness (RNFLT) measurements in glaucoma patients, those with suspected glaucoma, and normal subjects observed over time. METHODS. In this observational cohort study, patients recruited from two longitudinal studies (Diagnostic Innovations in Glaucoma Study-DIGS and African Descent and Evaluation Study-ADAGES) were observed with standard achromatic perimetry (SAP), optic disc stereophotographs, confocal scanning laser ophthalmoscopy (HRT-3; Heidelberg Engineering, Heidelberg, Germany), and scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Inc., Dublin, CA). Glaucoma progression was determined by the Guided Progression Analysis software for standard automated perimetry [SAP] and by masked assessment of serial optic disc stereophotographs by expert graders. Random-coefficients models were used to evaluate rates of change in average RNFLT and global RA measurements and their relationship with glaucoma progression. RESULTS. At baseline, 194 (31%) eyes were glaucomatous, 347 (55%) had suspected glaucoma, and 88 (14%) were normal. Forty-six (9%) eyes showed progression by SAP and/or stereophotographs, during an average follow-up of 3.3 (+/-0.7) years. The average rate of decline for RNFLT measurements was significantly higher in the progressing group than in the nonprogressing group (-0.65 vs. -0.11 microm/y, respectively; P < 0.001), whereas RA decline was not significantly different between these groups (-0.0058 vs. -0.0073 mm(2)/y, respectively; P = 0.727). The areas under the receiver operating characteristic (ROC) curves used to discriminate progressing versus nonprogressing eyes were 0.811 and 0.507 for the rates of change in the RNFLT and RA, respectively (P < 0.001). CONCLUSIONS. The ability to discriminate eyes with progressing glaucoma by SAP and/or stereophotographs from stable eyes was significantly greater for RNFLT than for RA measurements.

摘要

目的。评估并比较一段时间后青光眼患者、疑似青光眼患者和正常受试者的神经视网膜边缘区(RA)和视网膜神经纤维层厚度(RNFLT)测量值的变化率。

方法。在这项观察性队列研究中,从两项纵向研究(诊断创新在青光眼研究-DIGS 和非裔美国人评估研究-ADAGES)招募的患者接受标准的全色视野计(SAP)、视盘立体照相、共焦扫描激光检眼镜(HRT-3;海德堡工程,海德堡,德国)和扫描激光偏振计(GDx-VCC;卡尔蔡司 Meditec,Inc.,都柏林,CA)检查。青光眼进展通过标准自动视野计 [SAP] 的引导进展分析软件以及专家分级员对连续视盘立体照片的盲法评估来确定。随机系数模型用于评估平均 RNFLT 和全局 RA 测量值的变化率及其与青光眼进展的关系。

结果。在基线时,194 只(31%)眼为青光眼,347 只(55%)疑似青光眼,88 只(14%)正常。46 只(9%)眼通过 SAP 和/或立体照片显示进展,平均随访 3.3(+/-0.7)年。进展组的 RNFLT 测量值下降速度明显高于非进展组(分别为-0.65 和-0.11 µm/y;P<0.001),而两组之间的 RA 下降速度无显著差异(分别为-0.0058 和-0.0073 mm²/y;P=0.727)。用于区分进展眼和非进展眼的接收器操作特性(ROC)曲线下面积分别为 0.811 和 0.507,用于 RNFLT 和 RA 变化率的区分(P<0.001)。

结论。通过 SAP 和/或立体照片区分进展性青光眼眼和稳定眼的能力,RNFLT 明显优于 RA 测量值。

相似文献

1
A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma.
Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3531-9. doi: 10.1167/iovs.09-4350. Epub 2010 Mar 5.
2
Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements.
Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5741-8. doi: 10.1167/iovs.09-3715. Epub 2009 Oct 8.
4
Rates of Retinal Nerve Fiber Layer Loss in Contralateral Eyes of Glaucoma Patients with Unilateral Progression by Conventional Methods.
Ophthalmology. 2015 Nov;122(11):2243-51. doi: 10.1016/j.ophtha.2015.07.027. Epub 2015 Sep 15.
5
Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation.
Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1675-81. doi: 10.1167/iovs.08-2712. Epub 2008 Nov 21.
6
Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry.
Am J Ophthalmol. 2010 Jun;149(6):908-15. doi: 10.1016/j.ajo.2010.01.010. Epub 2010 Apr 8.
7
Optic disk and nerve fiber layer imaging to detect glaucoma.
Am J Ophthalmol. 2007 Nov;144(5):724-32. doi: 10.1016/j.ajo.2007.07.010. Epub 2007 Sep 14.
8
Longitudinal variability of optic disc and retinal nerve fiber layer measurements.
Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4886-92. doi: 10.1167/iovs.07-1187. Epub 2008 Jun 6.
9
The Relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma.
Ophthalmology. 2009 Jun;116(6):1125-33.e1-3. doi: 10.1016/j.ophtha.2008.12.062. Epub 2009 Apr 19.
10
Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation.
Am J Ophthalmol. 2009 Jul;148(1):155-63.e1. doi: 10.1016/j.ajo.2009.01.021. Epub 2009 Apr 17.

引用本文的文献

1
Automated Classification of Physiologic, Glaucomatous, and Glaucoma-Suspected Optic Discs Using Machine Learning.
Diagnostics (Basel). 2024 May 22;14(11):1073. doi: 10.3390/diagnostics14111073.
3
Accuracy of Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness in glaucoma diagnosis depending on optic disc size.
Graefes Arch Clin Exp Ophthalmol. 2024 Jun;262(6):1899-1910. doi: 10.1007/s00417-024-06375-3. Epub 2024 Jan 19.
4
Association of an Objective Structural and Functional Reference Standard for Glaucoma with Quality of Life Outcomes.
Ophthalmol Glaucoma. 2023 Mar-Apr;6(2):160-168. doi: 10.1016/j.ogla.2022.08.013. Epub 2022 Aug 28.
5
Optic Disc Microvasculature Dropout in Glaucoma Detected by Swept-Source Optical Coherence Tomography Angiography.
Am J Ophthalmol. 2022 Apr;236:261-270. doi: 10.1016/j.ajo.2021.10.029. Epub 2021 Nov 2.
6
Macular Thickness and Microvasculature Loss in Glaucoma Suspect Eyes.
Ophthalmol Glaucoma. 2022 Mar-Apr;5(2):170-178. doi: 10.1016/j.ogla.2021.07.009. Epub 2021 Jul 30.
8
Comparison of Peripapillary Capillary Density in Glaucoma Patients of African and European Descent.
Ophthalmol Glaucoma. 2021 Jan-Feb;4(1):51-62. doi: 10.1016/j.ogla.2020.07.005. Epub 2020 Jul 18.
9
A framework for assessing glaucoma progression using structural and functional indices jointly.
PLoS One. 2020 Jul 1;15(7):e0235255. doi: 10.1371/journal.pone.0235255. eCollection 2020.
10
Capillary Density Measured by Optical Coherence Tomography Angiography in Glaucomatous Optic Disc Phenotypes.
Am J Ophthalmol. 2020 Nov;219:261-270. doi: 10.1016/j.ajo.2020.06.012. Epub 2020 Jun 17.

本文引用的文献

1
The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data.
Arch Ophthalmol. 2009 Sep;127(9):1136-45. doi: 10.1001/archophthalmol.2009.187.
2
Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma.
Ophthalmology. 2009 Nov;116(11):2110-8. doi: 10.1016/j.ophtha.2009.04.031. Epub 2009 Jun 4.
4
The Relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma.
Ophthalmology. 2009 Jun;116(6):1125-33.e1-3. doi: 10.1016/j.ophtha.2008.12.062. Epub 2009 Apr 19.
5
Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation.
Am J Ophthalmol. 2009 Jul;148(1):155-63.e1. doi: 10.1016/j.ajo.2009.01.021. Epub 2009 Apr 17.
6
Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study.
Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1682-91. doi: 10.1167/iovs.08-2457. Epub 2008 Dec 5.
7
Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation.
Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1675-81. doi: 10.1167/iovs.08-2712. Epub 2008 Nov 21.
9
Variability of the standard reference height and its influence on the stereometric parameters of the heidelberg retina tomograph 3.
Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4881-5. doi: 10.1167/iovs.08-2331. Epub 2008 Aug 8.
10
Analysis of HRT images: comparison of reference planes.
Invest Ophthalmol Vis Sci. 2008 Sep;49(9):3970-5. doi: 10.1167/iovs.08-1764. Epub 2008 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验