Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
ChemSusChem. 2010 Apr 26;3(4):471-5. doi: 10.1002/cssc.200900255.
By using a nondestructive, ultrasensitive, fluorescence kinetic technique, we measure in situ the photochemical energy conversion efficiency and electron transfer kinetics on the acceptor side of histidine-tagged photosystem II core complexes tethered to gold surfaces. Atomic force microscopy images coupled with Rutherford backscattering spectroscopy measurements further allow us to assess the quality, number of layers, and surface density of the reaction center films. Based on these measurements, we calculate that the theoretical photoelectronic current density available for an ideal monolayer of core complexes is 43 microA cm(-2) at a photon flux density of 2000 micromol quanta m(-2) s(-1) between 365 and 750 nm. While this current density is approximately two orders of magnitude lower than the best organic photovoltaic cells (for an equivalent area), it provides an indication for future improvement strategies. The efficiency could be improved by increasing the optical cross section, by tuning the electron transfer physics between the core complexes and the metal surface, and by developing a multilayer structure, thereby making biomimetic photoelectron devices for hydrogen generation and chemical sensing more viable.
我们使用一种非破坏性、超灵敏的荧光动力学技术,原位测量了连接到金表面的组氨酸标记的光系统 II 核心复合物在受体侧的光化学能量转换效率和电子转移动力学。原子力显微镜图像与卢瑟福背散射光谱测量相结合,进一步允许我们评估反应中心膜的质量、层数和表面密度。基于这些测量,我们计算出在 365nm 至 750nm 之间的 2000 微米ol 量子 m(-2)s(-1)的光子通量密度下,理想单层核心复合物的理论光电电流密度为 43 微 A cm(-2)。虽然这个电流密度比最好的有机光伏电池(等效面积)低大约两个数量级,但它为未来的改进策略提供了一个指示。通过增加光学横截面、调整核心复合物与金属表面之间的电子转移物理以及开发多层结构,可以提高效率,从而使仿生光电电子设备更可行,用于制氢和化学传感。