School of Electrical Engineering and Computer Science, Seoul National University, San 56-1, Daehak-dong, Gwanak-gu, Seoul, 151-744, South Korea.
Anal Chem. 2010 Apr 1;82(7):2900-6. doi: 10.1021/ac902903q.
In order to offer an easier way to study interactions between multiple cellular populations, we have developed a novel method to precisely place cells in a variety of nonoverlapping patterns using surface tension in laterally open microchannels. Our design is fundamentally different from previous strategies such as compartmentalization, stamping, stenciling, or mechanical approaches. It relies on capillary action or the propensity for liquid to move more readily through narrow spaces as a result of surface tension. Until now, capillary based patterning has been limited to coating chemically isolated areas. Here, we demonstrate, through use of surface tension and controlled flooding, that it is possible to pattern multiple cells and proteins using laterally open channels in a variety of designs. We demonstrate the relevance of the concept by coculturing different mammalian cell types and evaluating the behavior of engineered quorum sensing circuits in E. coli. In the future, we believe the laterally open channel designs shown here can be useful for rapidly creating and studying cellular ecologies using simple pipetting.
为了提供一种更简便的方法来研究多种细胞群体之间的相互作用,我们开发了一种新颖的方法,通过横向开口微通道中的表面张力,精确地将细胞放置在各种非重叠的模式中。我们的设计与以前的策略(如分区、盖章、模板或机械方法)有根本的不同。它依赖于毛细作用或由于表面张力,液体更容易通过狭窄空间移动的倾向。到目前为止,基于毛细作用的图案化一直局限于化学隔离区域的涂层。在这里,我们通过使用表面张力和控制注水,展示了使用横向开口通道以各种设计对多种细胞和蛋白质进行图案化的可能性。我们通过共培养不同的哺乳动物细胞类型并评估大肠杆菌中工程群体感应电路的行为来证明该概念的相关性。在未来,我们相信这里展示的横向开口通道设计可以通过简单的移液操作快速创建和研究细胞生态系统。