Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.
Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
Adv Mater. 2023 May;35(19):e2209904. doi: 10.1002/adma.202209904. Epub 2023 Mar 29.
Stimuli-responsive biomaterials show great promise for modeling disease dynamics ex vivo with spatiotemporal control over the cellular microenvironment. However, harvesting cells from such materials for downstream analysis without perturbing their state remains an outstanding challenge in 3/4-dimensional (3D/4D) culture and tissue engineering. In this manuscript, a fully enzymatic strategy for hydrogel degradation that affords spatiotemporal control over cell release while maintaining cytocompatibility is introduced. Exploiting engineered variants of the sortase transpeptidase evolved to recognize and selectively cleave distinct peptide sequences largely absent from the mammalian proteome, many limitations implicit to state-of-the-art methods to liberate cells from gels are sidestepped. It is demonstrated that evolved sortase exposure has minimal impact on the global transcriptome of primary mammalian cells and that proteolytic cleavage proceeds with high specificity; incorporation of substrate sequences within hydrogel crosslinkers permits rapid and selective cell recovery with high viability. In composite multimaterial hydrogels, it is shown that sequential degradation of hydrogel layers enables highly specific retrieval of single-cell suspensions for phenotypic analysis. It is expected that the high bioorthogonality and substrate selectivity of the evolved sortases will lead to their broad adoption as an enzymatic material dissociation cue and that their multiplexed use will enable newfound studies in 4D cell culture.
刺激响应型生物材料在体外对细胞微环境进行时空控制,以模拟疾病动态方面具有很大的应用前景。然而,在 3/4 维(3D/4D)培养和组织工程中,从这些材料中提取细胞进行下游分析而不干扰其状态仍然是一个尚未解决的挑战。在本文中,介绍了一种完全酶法水凝胶降解策略,该策略可在保持细胞相容性的同时,对细胞释放进行时空控制。利用经过工程改造的、可识别和选择性切割特定肽序列的转肽酶变体,该变体在哺乳动物蛋白质组中很少出现,从而避开了从凝胶中释放细胞的最新方法所隐含的许多限制。研究表明,进化的转肽酶暴露对原代哺乳动物细胞的全转录组几乎没有影响,并且蛋白水解切割具有很高的特异性;在水凝胶交联剂中引入底物序列,可以实现快速、选择性的细胞回收,具有高活力。在复合多材料水凝胶中,已证明水凝胶层的顺序降解能够高度特异性地回收单细胞悬浮液进行表型分析。预计经过进化的转肽酶的高生物正交性和底物选择性将导致它们被广泛用作酶促材料解离线索,并且它们的复用将能够在 4D 细胞培养中开展新的研究。