Suppr超能文献

天冬氨酸转氨甲酰酶的不对称别构信号传递。

Asymmetric allosteric signaling in aspartate transcarbamoylase.

机构信息

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.

出版信息

ACS Chem Biol. 2010 May 21;5(5):499-506. doi: 10.1021/cb9003207.

Abstract

Here we use the fluorescence from a genetically encoded unnatural amino acid, l-(7-hydroxycoumarin-4-yl)ethylglycine (HCE-Gly), replacing an amino acid in the regulatory site of Escherichia coli aspartate transcarbamoylase (ATCase) to decipher the molecular details of regulation of this allosteric enzyme. The fluorescence of HCE-Gly is exquisitely sensitive to the binding of all four nucleotide effectors. Although ATP and CTP are primarily responsible for influencing enzyme activity, the results of our fluorescent binding studies indicate that UTP and GTP bind with similar affinities, suggesting a dissociation between nucleotide binding and control of enzyme activity. Furthermore, while CTP is the strongest regulator of enzyme activity, it binds selectively to only a fraction of regulatory sites, allowing UTP to effectively fill the residual ones. Our results suggest that CTP and UTP are not competing for the same binding sites, but instead reveal an asymmetry between the two allosteric sites on the regulatory subunit of the enzyme. Correlation of binding and activity measurements explain how ATCase uses asymmetric allosteric sites to achieve regulatory sensitivity over a broad range of heterotropic effector concentrations.

摘要

在这里,我们使用遗传编码的非天然氨基酸 l-(7-羟基香豆素-4-基)乙基甘氨酸 (HCE-Gly) 取代大肠杆菌天冬氨酸转氨甲酰酶 (ATCase) 调节位点中的一个氨基酸,以解析这种变构酶的调节的分子细节。HCE-Gly 的荧光对所有四个核苷酸效应物的结合都非常敏感。尽管 ATP 和 CTP 主要负责影响酶活性,但我们的荧光结合研究结果表明,UTP 和 GTP 的结合亲和力相似,表明核苷酸结合和解控酶活性之间存在分离。此外,虽然 CTP 是对酶活性最强的调节剂,但它仅选择性地结合到调节亚基的一部分调节位点,从而允许 UTP 有效地填充剩余的位点。我们的结果表明,CTP 和 UTP 并非在争夺相同的结合位点,而是揭示了酶调节亚基上两个变构位点之间的不对称性。结合和活性测量的相关性解释了 ATCase 如何利用不对称变构位点在广泛的异源效应物浓度范围内实现调节敏感性。

相似文献

1
Asymmetric allosteric signaling in aspartate transcarbamoylase.
ACS Chem Biol. 2010 May 21;5(5):499-506. doi: 10.1021/cb9003207.
4
Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
J Mol Biol. 1999 Dec 17;294(5):1387-400. doi: 10.1006/jmbi.1999.3315.
5
In the presence of CTP, UTP becomes an allosteric inhibitor of aspartate transcarbamoylase.
Proc Natl Acad Sci U S A. 1989 Jan;86(1):46-50. doi: 10.1073/pnas.86.1.46.

引用本文的文献

1
Mechanism of Nucleotide-Dependent Allosteric Regulation in Aspartate Transcarbamoylase.
bioRxiv. 2024 Nov 20:2024.11.19.624407. doi: 10.1101/2024.11.19.624407.
2
Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα)-Barrel Enzyme of Histidine Biosynthesis HisF.
JACS Au. 2024 Aug 15;4(8):3258-3276. doi: 10.1021/jacsau.4c00558. eCollection 2024 Aug 26.
3
Noncanonical Amino Acids in Biocatalysis.
Chem Rev. 2024 Jul 24;124(14):8740-8786. doi: 10.1021/acs.chemrev.4c00120. Epub 2024 Jul 3.
4
Structural Origins of Altered Spectroscopic Properties upon Ligand Binding in Proteins Containing a Fluorescent Noncanonical Amino Acid.
Biochemistry. 2021 Aug 31;60(34):2577-2585. doi: 10.1021/acs.biochem.1c00291. Epub 2021 Aug 20.
7
Metal ion involvement in the allosteric mechanism of Escherichia coli aspartate transcarbamoylase.
Biochemistry. 2012 Sep 11;51(36):7128-37. doi: 10.1021/bi300920m. Epub 2012 Aug 24.
8
A second allosteric site in Escherichia coli aspartate transcarbamoylase.
Biochemistry. 2012 Jun 19;51(24):4776-8. doi: 10.1021/bi3006219. Epub 2012 Jun 6.
9
Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase.
Arch Biochem Biophys. 2012 Mar 15;519(2):81-90. doi: 10.1016/j.abb.2011.10.024. Epub 2011 Dec 16.
10
Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.
Acc Chem Res. 2012 Mar 20;45(3):444-53. doi: 10.1021/ar200166p. Epub 2011 Oct 19.

本文引用的文献

1
Dissecting enzyme regulation by multiple allosteric effectors: nucleotide regulation of aspartate transcarbamoylase.
Biochemistry. 2008 May 27;47(21):5881-8. doi: 10.1021/bi8000566. Epub 2008 May 3.
2
A genetically encoded fluorescent amino acid.
J Am Chem Soc. 2006 Jul 12;128(27):8738-9. doi: 10.1021/ja062666k.
3
Expanding the genetic code.
Annu Rev Biophys Biomol Struct. 2006;35:225-49. doi: 10.1146/annurev.biophys.35.101105.121507.
4
Structural basis for ordered substrate binding and cooperativity in aspartate transcarbamoylase.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8881-6. doi: 10.1073/pnas.0503742102. Epub 2005 Jun 10.
5
DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS.
Ann N Y Acad Sci. 1964 Dec 28;121:404-27. doi: 10.1111/j.1749-6632.1964.tb14213.x.
6
DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY.
Ann N Y Acad Sci. 1964 Dec 28;121:321-49. doi: 10.1111/j.1749-6632.1964.tb14207.x.
8
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21. doi: 10.1107/s0907444998003254.
9
Aspartate transcarbamylase from Escherichia coli: activity and regulation.
Adv Enzymol Relat Areas Mol Biol. 1994;68:67-151. doi: 10.1002/9780470123140.ch3.
10
An improved colorimetric assay for aspartate and ornithine transcarbamylases.
Anal Biochem. 1981 Dec;118(2):358-63. doi: 10.1016/0003-2697(81)90594-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验