Suppr超能文献

针对变异链球菌的特异性靶向抗菌肽的系统优化方法。

Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans.

机构信息

School of Dentistry, University of California, Los Angeles, California 90095, USA.

出版信息

Antimicrob Agents Chemother. 2010 May;54(5):2143-51. doi: 10.1128/AAC.01391-09. Epub 2010 Mar 8.

Abstract

Previously we reported a novel strategy of "targeted killing" through the design of narrow-spectrum molecules known as specifically targeted antimicrobial peptides (STAMPs) (R. Eckert et al., Antimicrob. Agents Chemother. 50:3651-3657, 2006; R. Eckert et al., Antimicrob. Agents Chemother. 50:1480-1488, 2006). Construction of these molecules requires the identification and the subsequent utilization of two conjoined yet functionally independent peptide components: the targeting and killing regions. In this study, we sought to design and synthesize a large number of STAMPs targeting Streptococcus mutans, the primary etiologic agent of human dental caries, in order to identify candidate peptides with increased killing speed and selectivity compared with their unmodified precursor antimicrobial peptides (AMPs). We hypothesized that a combinatorial approach, utilizing a set number of AMP, targeting, and linker regions, would be an effective method for the identification of STAMPs with the desired level of activity. STAMPs composed of the Sm6 S. mutans binding peptide and the PL-135 AMP displayed selectivity at MICs after incubation for 18 to 24 h. A STAMP where PL-135 was replaced by the B-33 killing domain exhibited both selectivity and rapid killing within 1 min of exposure and displayed activity against multispecies biofilms grown in the presence of saliva. These results suggest that potent and selective STAMP molecules can be designed and improved via a tunable "building-block" approach.

摘要

先前我们报道了一种通过设计窄谱分子(即特异性靶向抗菌肽(STAMP))进行“靶向杀伤”的新策略(R. Eckert 等人,《抗菌剂和化疗杂志》50:3651-3657, 2006;R. Eckert 等人,《抗菌剂和化疗杂志》50:1480-1488, 2006)。这些分子的构建需要识别和随后利用两个连接但功能独立的肽成分:靶向和杀伤区域。在这项研究中,我们试图设计和合成大量针对变形链球菌(导致人类龋齿的主要病原体)的 STAMP,以鉴定与未修饰的前抗菌肽(AMP)相比具有更快杀伤速度和选择性的候选肽。我们假设,利用一组 AMP、靶向和连接子区域的组合方法,将是鉴定具有所需活性水平的 STAMP 的有效方法。由 Sm6 变形链球菌结合肽和 PL-135 AMP 组成的 STAMP 在孵育 18 至 24 小时后显示出 MIC 下的选择性。用 B-33 杀伤结构域替代 PL-135 的 STAMP 在暴露 1 分钟内表现出选择性和快速杀伤作用,并对唾液存在下生长的多物种生物膜显示出活性。这些结果表明,通过可调“积木”方法可以设计和改进有效的和选择性的 STAMP 分子。

相似文献

1
Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans.
Antimicrob Agents Chemother. 2010 May;54(5):2143-51. doi: 10.1128/AAC.01391-09. Epub 2010 Mar 8.
2
Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide.
Antimicrob Agents Chemother. 2006 Nov;50(11):3651-7. doi: 10.1128/AAC.00622-06.
3
Novel synthetic antimicrobial peptides against Streptococcus mutans.
Antimicrob Agents Chemother. 2007 Apr;51(4):1351-8. doi: 10.1128/AAC.01270-06. Epub 2007 Feb 12.
4
De novo synthetic short antimicrobial peptides against cariogenic bacteria.
Arch Oral Biol. 2017 Aug;80:41-50. doi: 10.1016/j.archoralbio.2017.03.017. Epub 2017 Mar 25.
5
Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7569-74. doi: 10.1073/pnas.1506207112. Epub 2015 Jun 1.
9
Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms.
Peptides. 2012 Feb;33(2):212-9. doi: 10.1016/j.peptides.2012.01.006. Epub 2012 Jan 20.
10
Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides.
Mol Oral Microbiol. 2011 Jun;26(3):187-99. doi: 10.1111/j.2041-1014.2011.00607.x. Epub 2011 Jan 31.

引用本文的文献

1
2
Peptide Designs for Use in Caries Management: A Systematic Review.
Int J Mol Sci. 2023 Feb 20;24(4):4247. doi: 10.3390/ijms24044247.
3
The future of recombinant host defense peptides.
Microb Cell Fact. 2022 Dec 21;21(1):267. doi: 10.1186/s12934-022-01991-2.
4
Specific Antimicrobial Peptide C16G2-Mediated Caries Prevention: A Review.
Front Dent. 2022 Jun 28;19:17. doi: 10.18502/fid.v19i17.9963. eCollection 2022.
6
DexA70, the Truncated Form of a Self-Produced Dextranase, Effectively Disrupts Biofilm.
Front Microbiol. 2021 Sep 28;12:737458. doi: 10.3389/fmicb.2021.737458. eCollection 2021.
8
Current status and future of delivery systems for prevention and treatment of infections in the oral cavity.
Drug Deliv Transl Res. 2021 Aug;11(4):1703-1734. doi: 10.1007/s13346-021-00961-2. Epub 2021 Mar 26.
9
Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs).
Front Microbiol. 2021 Feb 22;12:616979. doi: 10.3389/fmicb.2021.616979. eCollection 2021.
10
Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms.
Mol Oral Microbiol. 2019 Oct;34(5):169-182. doi: 10.1111/omi.12267. Epub 2019 Aug 15.

本文引用的文献

1
Design and characterization of an acid-activated antimicrobial peptide.
Chem Biol Drug Des. 2010 Jan;75(1):127-32. doi: 10.1111/j.1747-0285.2009.00904.x. Epub 2009 Oct 28.
2
Design and activity of a 'dual-targeted' antimicrobial peptide.
Int J Antimicrob Agents. 2009 Jun;33(6):532-7. doi: 10.1016/j.ijantimicag.2008.11.013. Epub 2009 Feb 1.
3
Global resistance trends and the potential impact on empirical therapy.
Int J Antimicrob Agents. 2008 Dec;32 Suppl 4:S201-6. doi: 10.1016/S0924-8579(09)70003-2.
4
Novel synthetic antimicrobial peptides against Streptococcus mutans.
Antimicrob Agents Chemother. 2007 Apr;51(4):1351-8. doi: 10.1128/AAC.01270-06. Epub 2007 Feb 12.
5
Fluorescent Detection of Oral Pathogens by a Solid-Phase Immunoassay on PDMS.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2630-3. doi: 10.1109/IEMBS.2005.1617009.
6
Nature of symbiosis in oral disease.
J Dent Res. 2007 Jan;86(1):8-11. doi: 10.1177/154405910708600102.
7
Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide.
Antimicrob Agents Chemother. 2006 Nov;50(11):3651-7. doi: 10.1128/AAC.00622-06.
8
Biofilms, a new approach to the microbiology of dental plaque.
Odontology. 2006 Sep;94(1):1-9. doi: 10.1007/s10266-006-0063-3.
9
Enhancement of antimicrobial activity against pseudomonas aeruginosa by coadministration of G10KHc and tobramycin.
Antimicrob Agents Chemother. 2006 Nov;50(11):3833-8. doi: 10.1128/AAC.00509-06. Epub 2006 Aug 28.
10
Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data.
Lancet. 2006 May 27;367(9524):1747-57. doi: 10.1016/S0140-6736(06)68770-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验