Department of Behavioral Neuroscience, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
J Physiol. 2010 May 1;588(Pt 9):1499-514. doi: 10.1113/jphysiol.2010.187609. Epub 2010 Mar 8.
Transient, non-catastrophic brain ischaemia can induce either a protected state against subsequent episodes of ischaemia (ischaemic preconditioning) or delayed, selective neuronal death. Altered glutamatergic signalling and altered Ca(2+) homeostasis have been implicated in both processes. Here we use simultaneous patch-clamp recording and Ca(2+) imaging to monitor early changes in glutamate release and cytoplasmic [Ca(2+)] (Ca(2+)) in an in vitro slice model of hippocampal ischaemia. In slices loaded with the Ca(2+)-sensitive dye Fura-2, ischaemia leads to an early increase in Ca(2+) that precedes the severe ischaemic depolarization (ID) associated with pan necrosis. The early increase in Ca(2+) is mediated by influx through the plasma membrane and release from internal stores, and parallels an early increase in vesicular glutamate release that manifests as a fourfold increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs). However, the increase in mEPSC frequency is not prevented by blocking the increase in Ca(2+), and the early rise in Ca(2+) is not affected by blocking ionotropic and metabotropic glutamate receptors. Thus, the increase in Ca(2+) and the increase in glutamate release are independent of each other. Stabilizing actin filaments with jaspamide or phalloidin prevented vesicle release induced by ischaemia. Our results identify several early cellular cascades triggered by ischaemia: Ca(2+) influx, Ca(2+) release from intracellular stores, actin filament depolymerization, and vesicular release of glutamate that depends on actin dynamics but not Ca(2+). All of these processes precede the catastrophic ID by several minutes, and thus represent potential target mechanisms to influence the outcome of an ischaemic episode.
短暂、非灾难性的脑缺血可诱导对随后缺血发作的保护状态(缺血预处理)或延迟、选择性神经元死亡。谷氨酸能信号转导和 Ca(2+) 内稳态的改变与这两个过程都有关。在这里,我们使用同时进行的膜片钳记录和 Ca(2+) 成像,在海马体缺血的体外切片模型中监测谷氨酸释放和细胞质 [Ca(2+)] (Ca(2+)) 的早期变化。在加载 Ca(2+) 敏感染料 Fura-2 的切片中,缺血导致 Ca(2+) 的早期增加,这先于与全坏死相关的严重缺血去极化 (ID)。Ca(2+) 的早期增加是通过质膜内流和内部储存库释放介导的,与早期的囊泡谷氨酸释放增加平行,表现为微小兴奋性突触后电流 (mEPSC) 频率增加四倍。然而,阻断 Ca(2+) 的增加并不能防止 mEPSC 频率的增加,而早期 Ca(2+) 的增加也不受阻断离子型和代谢型谷氨酸受体的影响。因此,Ca(2+) 的增加和谷氨酸释放的增加是相互独立的。用 JaspaMide 或 Phalloidin 稳定肌动蛋白丝可防止缺血诱导的囊泡释放。我们的结果确定了缺血触发的几个早期细胞级联反应:Ca(2+) 内流、细胞内储存库的 Ca(2+) 释放、肌动蛋白丝解聚以及依赖于肌动蛋白动力学但不依赖于 Ca(2+) 的谷氨酸囊泡释放。所有这些过程都在灾难性 ID 发生前几分钟发生,因此代表了影响缺血发作结果的潜在目标机制。
Front Cell Neurosci. 2021-2-2
Front Cell Neurosci. 2020-3-19
Oncotarget. 2015-4-30
J Neurosci. 2012-5-9
Nat Neurosci. 2009-6
J Physiol. 2009-2-15
Physiol Rev. 2008-1
Neurosci Lett. 2008-2-20
Nat Neurosci. 2007-11
Science. 2006-5-12
J Cereb Blood Flow Metab. 2005-10