Lee Seul Yi, Kim Jun Hee
Department of Physiology.
Centre for Biomedical Neuroscience, University of Texas Health Science Centre, San Antonio, Texas, 78229, USA.
J Physiol. 2015 Jul 1;593(13):2793-806. doi: 10.1113/JP270060. Epub 2015 May 22.
KEY POINTS: Here we demonstrate presynaptic responses and mechanisms of increased vesicular glutamate release during in vitro ischaemia in the calyx of Held terminal, an experimentally accessible presynaptic terminal in the CNS. The ischaemia-induced increase in presynaptic Ca(2+) was mediated by both Ca(2+) influx and Ca(2+) -induced Ca(2+) release from intracellular stores. The reverse operation of the plasma membrane Na(+) /Ca(2+) exchanger (NCX) plays a key role in Ca(2+) influx for triggering Ca(2+) release from intracellular stores at presynaptic terminals during in vitro ischaemia. Ca(2+) uptake via NCX underlies the ischaemia-induced Ca(2+) rise and the consequent increase in vesicular glutamate release from presynaptic terminals in the early phase of brain ischaemia. ABSTRACT: An early consequence of brain ischaemia is an increase in vesicular glutamate release from presynaptic terminals. However, the mechanisms of this increased glutamate release are not fully understood. Here we studied presynaptic responses and mechanisms of increased glutamate release during in vitro ischaemia, using pre- and postsynaptic whole-cell recordings and presynaptic Ca(2+) imaging at the calyx of Held synapse in rat brainstem slices. Consistent with results from other brain regions, in vitro ischaemia significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) without affecting their amplitude, suggesting that ischaemia enhances vesicular glutamate release from presynaptic terminals. We found that ischaemia-induced vesicular glutamate release was dependent on a rise in basal Ca(2+) at presynaptic terminals, which resulted from extracellular Ca(2+) influx and Ca(2+) release from intracellular stores. During early ischaemia, increased Ca(2+) influx into presynaptic terminals was due to reverse operation of the plasma membrane Na(+) /Ca(2+) exchanger (NCX) rather than presynaptic depolarization or voltage-activated Ca(2+) currents. KB-R7943, an inhibitor of NCX, prevented the ischaemia-induced increases in presynaptic Ca(2+) and vesicular glutamate release. In addition, the removal of extracellular Na(+) completely inhibited the ischaemia-induced Ca(2+) rise. It therefore appears that a link between Na(+) accumulation and Ca(2+) uptake via NCX underlies the ischaemia-induced Ca(2+) rise and the consequent increase in vesicular glutamate release from presynaptic terminals in the early phase of brain ischaemia.
J Neurosci. 2020-8-5
J Neurophysiol. 2002-4
Front Mol Med. 2023-9-7
Front Mol Neurosci. 2022-12-5
Front Neurol. 2020-10-23
Biochem Biophys Res Commun. 2014-1-14
J Neurophysiol. 2012-9-12
Neuron. 2012-9-6
J Cereb Blood Flow Metab. 2009-10-21
Curr Neurol Neurosci Rep. 2008-3