使用逻辑回归和倾向评分分层法估计边缘比值比的估计值和置信区间。

Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification.

机构信息

Freiburg Center for Data Analysis and Modeling, 79104 Freiburg, Germany.

出版信息

Stat Med. 2010 Mar 30;29(7-8):760-9. doi: 10.1002/sim.3811.

Abstract

Propensity score methods are widely used to estimate treatment or exposure effects in observational studies. In studies with binary response the effect can be described as an odds ratio, and the Mantel-Haenszel estimator is traditionally used for stratified data. Although propensity score methods are designed for marginal treatment effects, it has been shown that the Mantel-Haenszel estimator stratified for propensity score is a questionable estimator for the marginal odds ratio, which describes the change in odds of response if everybody versus nobody were treated.We studied recently proposed alternative estimators for the marginal odds ratio, one stratified for propensity score, the other derived from logistic regression. Additionally, we adapted the methodology of the logistic regression based estimator for the derivation of a marginal odds ratio estimator to covariate adjustment by the propensity score. We also derived corresponding variance estimators using the Delta-method.The estimators were illustrated and compared to the inverse probability weighted estimator and the stratified Mantel-Haenszel estimator in a study dealing with respiratory tract infections in children in Germany. Furthermore, simulation studies that were carried out to investigate relative bias, variance and coverage probability showed reasonable performance of marginal odds ratio estimators if response rates or regression based approaches were used. Their variances were accurately estimated. In contrast, the stratified Mantel-Haenszel estimator was substantially biased in some situations due to problems of non-collapsibility and thus it is generally inappropriate for a reliable estimation of the marginal odds ratio.

摘要

倾向评分方法广泛用于观察性研究中估计治疗或暴露效果。在二分类反应研究中,效果可以用优势比来描述,传统上使用 Mantel-Haenszel 估计量对分层数据进行估计。尽管倾向评分方法是为边际治疗效果而设计的,但已经表明,对于描述如果每个人都接受治疗而不是没有人接受治疗时反应概率的变化的边际优势比,基于倾向评分分层的 Mantel-Haenszel 估计量是一个有问题的估计量。我们研究了最近提出的用于边际优势比的替代估计量,一个基于倾向评分的分层估计量,另一个来自逻辑回归。此外,我们还改编了基于逻辑回归的估计量的方法,以通过倾向评分进行协变量调整。我们还使用 Delta 方法推导出了相应的方差估计量。在一项涉及德国儿童呼吸道感染的研究中,我们通过实例说明了这些估计量,并将其与逆概率加权估计量和分层 Mantel-Haenszel 估计量进行了比较。此外,为了研究相对偏差、方差和覆盖率概率而进行的模拟研究表明,如果使用反应率或基于回归的方法,边际优势比估计量的性能合理。它们的方差可以准确估计。相比之下,由于非可加性的问题,分层 Mantel-Haenszel 估计量在某些情况下会出现显著偏差,因此通常不适合可靠估计边际优势比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索